Metamath Proof Explorer


Theorem dp2ltc

Description: Comparing two decimal expansions (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dp2lt.a A 0
dp2lt.b B +
dp2ltc.c C 0
dp2ltc.d D +
dp2ltc.s B < 10
dp2ltc.l A < C
Assertion dp2ltc Could not format assertion : No typesetting found for |- _ A B < _ C D with typecode |-

Proof

Step Hyp Ref Expression
1 dp2lt.a A 0
2 dp2lt.b B +
3 dp2ltc.c C 0
4 dp2ltc.d D +
5 dp2ltc.s B < 10
6 dp2ltc.l A < C
7 rpssre +
8 7 2 sselii B
9 10re 10
10 10pos 0 < 10
11 elrp 10 + 10 0 < 10
12 9 10 11 mpbir2an 10 +
13 divlt1lt B 10 + B 10 < 1 B < 10
14 8 12 13 mp2an B 10 < 1 B < 10
15 5 14 mpbir B 10 < 1
16 9 10 gt0ne0ii 10 0
17 8 9 16 redivcli B 10
18 1re 1
19 1 nn0rei A
20 ltadd2 B 10 1 A B 10 < 1 A + B 10 < A + 1
21 17 18 19 20 mp3an B 10 < 1 A + B 10 < A + 1
22 15 21 mpbi A + B 10 < A + 1
23 1 nn0zi A
24 3 nn0zi C
25 zltp1le A C A < C A + 1 C
26 23 24 25 mp2an A < C A + 1 C
27 6 26 mpbi A + 1 C
28 19 17 readdcli A + B 10
29 19 18 readdcli A + 1
30 3 nn0rei C
31 28 29 30 ltletri A + B 10 < A + 1 A + 1 C A + B 10 < C
32 22 27 31 mp2an A + B 10 < C
33 4 12 pm3.2i D + 10 +
34 rpdivcl D + 10 + D 10 +
35 33 34 ax-mp D 10 +
36 ltaddrp C D 10 + C < C + D 10
37 30 35 36 mp2an C < C + D 10
38 7 4 sselii D
39 38 9 16 redivcli D 10
40 30 39 readdcli C + D 10
41 28 30 40 lttri A + B 10 < C C < C + D 10 A + B 10 < C + D 10
42 32 37 41 mp2an A + B 10 < C + D 10
43 df-dp2 Could not format _ A B = ( A + ( B / ; 1 0 ) ) : No typesetting found for |- _ A B = ( A + ( B / ; 1 0 ) ) with typecode |-
44 df-dp2 Could not format _ C D = ( C + ( D / ; 1 0 ) ) : No typesetting found for |- _ C D = ( C + ( D / ; 1 0 ) ) with typecode |-
45 42 43 44 3brtr4i Could not format _ A B < _ C D : No typesetting found for |- _ A B < _ C D with typecode |-