Metamath Proof Explorer


Theorem dp2ltsuc

Description: Comparing a decimal fraction with the next integer. (Contributed by Thierry Arnoux, 25-Dec-2021)

Ref Expression
Hypotheses dp2lt.a A 0
dp2lt.b B +
dp2ltsuc.1 B < 10
dp2ltsuc.2 A + 1 = C
Assertion dp2ltsuc Could not format assertion : No typesetting found for |- _ A B < C with typecode |-

Proof

Step Hyp Ref Expression
1 dp2lt.a A 0
2 dp2lt.b B +
3 dp2ltsuc.1 B < 10
4 dp2ltsuc.2 A + 1 = C
5 rpre B + B
6 2 5 ax-mp B
7 10re 10
8 10pos 0 < 10
9 6 7 7 8 ltdiv1ii B < 10 B 10 < 10 10
10 3 9 mpbi B 10 < 10 10
11 7 recni 10
12 10nn 10
13 12 nnne0i 10 0
14 11 13 dividi 10 10 = 1
15 10 14 breqtri B 10 < 1
16 6 7 13 redivcli B 10
17 1re 1
18 1 nn0rei A
19 16 17 18 ltadd2i B 10 < 1 A + B 10 < A + 1
20 15 19 mpbi A + B 10 < A + 1
21 df-dp2 Could not format _ A B = ( A + ( B / ; 1 0 ) ) : No typesetting found for |- _ A B = ( A + ( B / ; 1 0 ) ) with typecode |-
22 4 eqcomi C = A + 1
23 20 21 22 3brtr4i Could not format _ A B < C : No typesetting found for |- _ A B < C with typecode |-