Metamath Proof Explorer


Theorem dpgti

Description: Comparing a decimal expansions with the next lower integer. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dpgti.a A 0
dpgti.b B +
Assertion dpgti A < A . B

Proof

Step Hyp Ref Expression
1 dpgti.a A 0
2 dpgti.b B +
3 1 nn0rei A
4 10re 10
5 10pos 0 < 10
6 4 5 pm3.2i 10 0 < 10
7 elrp 10 + 10 0 < 10
8 6 7 mpbir 10 +
9 rpdivcl B + 10 + B 10 +
10 2 8 9 mp2an B 10 +
11 ltaddrp A B 10 + A < A + B 10
12 3 10 11 mp2an A < A + B 10
13 rpre B + B
14 2 13 ax-mp B
15 1 14 dpval2 A . B = A + B 10
16 12 15 breqtrri A < A . B