Step |
Hyp |
Ref |
Expression |
1 |
|
dpjfval.1 |
|
2 |
|
dpjfval.2 |
|
3 |
|
dpjfval.p |
|
4 |
|
dpjidcl.3 |
|
5 |
|
dpjidcl.0 |
|
6 |
|
dpjidcl.w |
|
7 |
5 6
|
eldprd |
|
8 |
2 7
|
syl |
|
9 |
4 8
|
mpbid |
|
10 |
9
|
simprd |
|
11 |
1
|
adantr |
|
12 |
2
|
adantr |
|
13 |
1
|
ad2antrr |
|
14 |
2
|
ad2antrr |
|
15 |
|
simpr |
|
16 |
13 14 3 15
|
dpjf |
|
17 |
4
|
ad2antrr |
|
18 |
16 17
|
ffvelrnd |
|
19 |
1 2
|
dprddomcld |
|
20 |
19
|
mptexd |
|
21 |
20
|
adantr |
|
22 |
|
funmpt |
|
23 |
22
|
a1i |
|
24 |
|
simprl |
|
25 |
6 11 12 24
|
dprdffsupp |
|
26 |
|
eldifi |
|
27 |
|
eqid |
|
28 |
13 14 3 27 15
|
dpjval |
|
29 |
28
|
fveq1d |
|
30 |
26 29
|
sylan2 |
|
31 |
|
simplrr |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
|
dprdgrp |
|
35 |
|
grpmnd |
|
36 |
11 34 35
|
3syl |
|
37 |
36
|
adantr |
|
38 |
19
|
ad2antrr |
|
39 |
6 11 12 24 32
|
dprdff |
|
40 |
39
|
adantr |
|
41 |
24
|
adantr |
|
42 |
6 13 14 41 33
|
dprdfcntz |
|
43 |
26 42
|
sylan2 |
|
44 |
|
snssi |
|
45 |
44
|
adantl |
|
46 |
45
|
difss2d |
|
47 |
|
suppssdm |
|
48 |
47 39
|
fssdm |
|
49 |
48
|
adantr |
|
50 |
|
ssconb |
|
51 |
46 49 50
|
syl2anc |
|
52 |
45 51
|
mpbid |
|
53 |
25
|
adantr |
|
54 |
32 5 33 37 38 40 43 52 53
|
gsumzres |
|
55 |
31 54
|
eqtr4d |
|
56 |
|
eqid |
|
57 |
|
difss |
|
58 |
57
|
a1i |
|
59 |
13 14 58
|
dprdres |
|
60 |
59
|
simpld |
|
61 |
13 14
|
dprdf2 |
|
62 |
|
fssres |
|
63 |
61 57 62
|
sylancl |
|
64 |
63
|
fdmd |
|
65 |
39
|
adantr |
|
66 |
65
|
feqmptd |
|
67 |
66
|
reseq1d |
|
68 |
|
resmpt |
|
69 |
57 68
|
ax-mp |
|
70 |
67 69
|
eqtrdi |
|
71 |
|
eldifi |
|
72 |
6 13 14 41
|
dprdfcl |
|
73 |
71 72
|
sylan2 |
|
74 |
|
fvres |
|
75 |
74
|
adantl |
|
76 |
73 75
|
eleqtrrd |
|
77 |
19
|
difexd |
|
78 |
77
|
mptexd |
|
79 |
78
|
ad2antrr |
|
80 |
|
funmpt |
|
81 |
80
|
a1i |
|
82 |
25
|
adantr |
|
83 |
|
ssdif |
|
84 |
57 83
|
ax-mp |
|
85 |
84
|
sseli |
|
86 |
|
ssidd |
|
87 |
19
|
ad2antrr |
|
88 |
5
|
fvexi |
|
89 |
88
|
a1i |
|
90 |
65 86 87 89
|
suppssr |
|
91 |
85 90
|
sylan2 |
|
92 |
77
|
ad2antrr |
|
93 |
91 92
|
suppss2 |
|
94 |
|
fsuppsssupp |
|
95 |
79 81 82 93 94
|
syl22anc |
|
96 |
56 60 64 76 95
|
dprdwd |
|
97 |
70 96
|
eqeltrd |
|
98 |
5 56 60 64 97
|
eldprdi |
|
99 |
26 98
|
sylan2 |
|
100 |
55 99
|
eqeltrd |
|
101 |
|
eqid |
|
102 |
|
eqid |
|
103 |
61 15
|
ffvelrnd |
|
104 |
|
dprdsubg |
|
105 |
60 104
|
syl |
|
106 |
13 14 15 5
|
dpjdisj |
|
107 |
13 14 15 33
|
dpjcntz |
|
108 |
101 102 5 33 103 105 106 107 27
|
pj1rid |
|
109 |
26 108
|
sylanl2 |
|
110 |
100 109
|
mpdan |
|
111 |
30 110
|
eqtrd |
|
112 |
19
|
adantr |
|
113 |
111 112
|
suppss2 |
|
114 |
|
fsuppsssupp |
|
115 |
21 23 25 113 114
|
syl22anc |
|
116 |
6 11 12 18 115
|
dprdwd |
|
117 |
|
simprr |
|
118 |
39
|
feqmptd |
|
119 |
|
simplrr |
|
120 |
13 34 35
|
3syl |
|
121 |
6 13 14 41
|
dprdffsupp |
|
122 |
|
disjdif |
|
123 |
122
|
a1i |
|
124 |
|
undif2 |
|
125 |
15
|
snssd |
|
126 |
|
ssequn1 |
|
127 |
125 126
|
sylib |
|
128 |
124 127
|
eqtr2id |
|
129 |
32 5 101 33 120 87 65 42 121 123 128
|
gsumzsplit |
|
130 |
65 125
|
feqresmpt |
|
131 |
130
|
oveq2d |
|
132 |
65 15
|
ffvelrnd |
|
133 |
|
fveq2 |
|
134 |
32 133
|
gsumsn |
|
135 |
120 15 132 134
|
syl3anc |
|
136 |
131 135
|
eqtrd |
|
137 |
136
|
oveq1d |
|
138 |
119 129 137
|
3eqtrd |
|
139 |
13 14 15 102
|
dpjlsm |
|
140 |
17 139
|
eleqtrd |
|
141 |
6 11 12 24
|
dprdfcl |
|
142 |
101 102 5 33 103 105 106 107 27 140 141 98
|
pj1eq |
|
143 |
138 142
|
mpbid |
|
144 |
143
|
simpld |
|
145 |
29 144
|
eqtrd |
|
146 |
145
|
mpteq2dva |
|
147 |
118 146
|
eqtr4d |
|
148 |
147
|
oveq2d |
|
149 |
117 148
|
eqtrd |
|
150 |
116 149
|
jca |
|
151 |
10 150
|
rexlimddv |
|