Metamath Proof Explorer


Theorem dpjlem

Description: Lemma for theorems about direct product projection. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 φ G dom DProd S
dpjfval.2 φ dom S = I
dpjlem.3 φ X I
Assertion dpjlem φ G DProd S X = S X

Proof

Step Hyp Ref Expression
1 dpjfval.1 φ G dom DProd S
2 dpjfval.2 φ dom S = I
3 dpjlem.3 φ X I
4 1 2 dprdf2 φ S : I SubGrp G
5 4 ffnd φ S Fn I
6 fnressn S Fn I X I S X = X S X
7 5 3 6 syl2anc φ S X = X S X
8 7 oveq2d φ G DProd S X = G DProd X S X
9 4 3 ffvelrnd φ S X SubGrp G
10 dprdsn X I S X SubGrp G G dom DProd X S X G DProd X S X = S X
11 3 9 10 syl2anc φ G dom DProd X S X G DProd X S X = S X
12 11 simprd φ G DProd X S X = S X
13 8 12 eqtrd φ G DProd S X = S X