Metamath Proof Explorer


Theorem dpjlid

Description: The X -th index projection acts as the identity on elements of the X -th factor. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 φ G dom DProd S
dpjfval.2 φ dom S = I
dpjfval.p P = G dProj S
dpjlid.3 φ X I
dpjlid.4 φ A S X
Assertion dpjlid φ P X A = A

Proof

Step Hyp Ref Expression
1 dpjfval.1 φ G dom DProd S
2 dpjfval.2 φ dom S = I
3 dpjfval.p P = G dProj S
4 dpjlid.3 φ X I
5 dpjlid.4 φ A S X
6 eqid proj 1 G = proj 1 G
7 1 2 3 6 4 dpjval φ P X = S X proj 1 G G DProd S I X
8 7 fveq1d φ P X A = S X proj 1 G G DProd S I X A
9 eqid + G = + G
10 eqid LSSum G = LSSum G
11 eqid 0 G = 0 G
12 eqid Cntz G = Cntz G
13 1 2 dprdf2 φ S : I SubGrp G
14 13 4 ffvelrnd φ S X SubGrp G
15 difssd φ I X I
16 1 2 15 dprdres φ G dom DProd S I X G DProd S I X G DProd S
17 16 simpld φ G dom DProd S I X
18 dprdsubg G dom DProd S I X G DProd S I X SubGrp G
19 17 18 syl φ G DProd S I X SubGrp G
20 1 2 4 11 dpjdisj φ S X G DProd S I X = 0 G
21 1 2 4 12 dpjcntz φ S X Cntz G G DProd S I X
22 9 10 11 12 14 19 20 21 6 pj1lid φ A S X S X proj 1 G G DProd S I X A = A
23 5 22 mpdan φ S X proj 1 G G DProd S I X A = A
24 8 23 eqtrd φ P X A = A