Metamath Proof Explorer


Theorem dpjlsm

Description: The two subgroups that appear in dpjval add to the full direct product. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 φ G dom DProd S
dpjfval.2 φ dom S = I
dpjlem.3 φ X I
dpjlsm.s ˙ = LSSum G
Assertion dpjlsm φ G DProd S = S X ˙ G DProd S I X

Proof

Step Hyp Ref Expression
1 dpjfval.1 φ G dom DProd S
2 dpjfval.2 φ dom S = I
3 dpjlem.3 φ X I
4 dpjlsm.s ˙ = LSSum G
5 1 2 dprdf2 φ S : I SubGrp G
6 disjdif X I X =
7 6 a1i φ X I X =
8 undif2 X I X = X I
9 3 snssd φ X I
10 ssequn1 X I X I = I
11 9 10 sylib φ X I = I
12 8 11 eqtr2id φ I = X I X
13 5 7 12 4 1 dprdsplit φ G DProd S = G DProd S X ˙ G DProd S I X
14 1 2 3 dpjlem φ G DProd S X = S X
15 14 oveq1d φ G DProd S X ˙ G DProd S I X = S X ˙ G DProd S I X
16 13 15 eqtrd φ G DProd S = S X ˙ G DProd S I X