Metamath Proof Explorer


Theorem dpjrid

Description: The Y -th index projection annihilates elements of other factors. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 φ G dom DProd S
dpjfval.2 φ dom S = I
dpjfval.p P = G dProj S
dpjlid.3 φ X I
dpjlid.4 φ A S X
dpjrid.0 0 ˙ = 0 G
dpjrid.5 φ Y I
dpjrid.6 φ Y X
Assertion dpjrid φ P Y A = 0 ˙

Proof

Step Hyp Ref Expression
1 dpjfval.1 φ G dom DProd S
2 dpjfval.2 φ dom S = I
3 dpjfval.p P = G dProj S
4 dpjlid.3 φ X I
5 dpjlid.4 φ A S X
6 dpjrid.0 0 ˙ = 0 G
7 dpjrid.5 φ Y I
8 dpjrid.6 φ Y X
9 fveq2 x = Y P x = P Y
10 9 fveq1d x = Y P x A = P Y A
11 eqeq1 x = Y x = X Y = X
12 11 ifbid x = Y if x = X A 0 ˙ = if Y = X A 0 ˙
13 10 12 eqeq12d x = Y P x A = if x = X A 0 ˙ P Y A = if Y = X A 0 ˙
14 eqid h i I S i | finSupp 0 ˙ h = h i I S i | finSupp 0 ˙ h
15 eqid x I if x = X A 0 ˙ = x I if x = X A 0 ˙
16 6 14 1 2 4 5 15 dprdfid φ x I if x = X A 0 ˙ h i I S i | finSupp 0 ˙ h G x I if x = X A 0 ˙ = A
17 16 simprd φ G x I if x = X A 0 ˙ = A
18 17 eqcomd φ A = G x I if x = X A 0 ˙
19 1 2 4 dprdub φ S X G DProd S
20 19 5 sseldd φ A G DProd S
21 16 simpld φ x I if x = X A 0 ˙ h i I S i | finSupp 0 ˙ h
22 1 2 3 20 6 14 21 dpjeq φ A = G x I if x = X A 0 ˙ x I P x A = if x = X A 0 ˙
23 18 22 mpbid φ x I P x A = if x = X A 0 ˙
24 13 23 7 rspcdva φ P Y A = if Y = X A 0 ˙
25 ifnefalse Y X if Y = X A 0 ˙ = 0 ˙
26 8 25 syl φ if Y = X A 0 ˙ = 0 ˙
27 24 26 eqtrd φ P Y A = 0 ˙