Metamath Proof Explorer


Theorem dpjval

Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 φGdomDProdS
dpjfval.2 φdomS=I
dpjfval.p P=GdProjS
dpjfval.q Q=proj1G
dpjval.3 φXI
Assertion dpjval φPX=SXQGDProdSIX

Proof

Step Hyp Ref Expression
1 dpjfval.1 φGdomDProdS
2 dpjfval.2 φdomS=I
3 dpjfval.p P=GdProjS
4 dpjfval.q Q=proj1G
5 dpjval.3 φXI
6 1 2 3 4 dpjfval φP=xISxQGDProdSIx
7 simpr φx=Xx=X
8 7 fveq2d φx=XSx=SX
9 7 sneqd φx=Xx=X
10 9 difeq2d φx=XIx=IX
11 10 reseq2d φx=XSIx=SIX
12 11 oveq2d φx=XGDProdSIx=GDProdSIX
13 8 12 oveq12d φx=XSxQGDProdSIx=SXQGDProdSIX
14 ovexd φSXQGDProdSIXV
15 6 13 5 14 fvmptd φPX=SXQGDProdSIX