Metamath Proof Explorer


Theorem dpjval

Description: Value of the direct product projection (defined in terms of binary projection). (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dpjfval.1 φ G dom DProd S
dpjfval.2 φ dom S = I
dpjfval.p P = G dProj S
dpjfval.q Q = proj 1 G
dpjval.3 φ X I
Assertion dpjval φ P X = S X Q G DProd S I X

Proof

Step Hyp Ref Expression
1 dpjfval.1 φ G dom DProd S
2 dpjfval.2 φ dom S = I
3 dpjfval.p P = G dProj S
4 dpjfval.q Q = proj 1 G
5 dpjval.3 φ X I
6 1 2 3 4 dpjfval φ P = x I S x Q G DProd S I x
7 simpr φ x = X x = X
8 7 fveq2d φ x = X S x = S X
9 7 sneqd φ x = X x = X
10 9 difeq2d φ x = X I x = I X
11 10 reseq2d φ x = X S I x = S I X
12 11 oveq2d φ x = X G DProd S I x = G DProd S I X
13 8 12 oveq12d φ x = X S x Q G DProd S I x = S X Q G DProd S I X
14 ovexd φ S X Q G DProd S I X V
15 6 13 5 14 fvmptd φ P X = S X Q G DProd S I X