Metamath Proof Explorer


Theorem dpltc

Description: Comparing two decimal integers (unequal higher places). (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dpltc.a A 0
dpltc.b B +
dpltc.c C 0
dpltc.d D +
dpltc.1 A < C
dpltc.2 B < 10
Assertion dpltc A . B < C . D

Proof

Step Hyp Ref Expression
1 dpltc.a A 0
2 dpltc.b B +
3 dpltc.c C 0
4 dpltc.d D +
5 dpltc.1 A < C
6 dpltc.2 B < 10
7 1 2 3 4 6 5 dp2ltc Could not format _ A B < _ C D : No typesetting found for |- _ A B < _ C D with typecode |-
8 1 2 dpval3rp Could not format ( A . B ) = _ A B : No typesetting found for |- ( A . B ) = _ A B with typecode |-
9 3 4 dpval3rp Could not format ( C . D ) = _ C D : No typesetting found for |- ( C . D ) = _ C D with typecode |-
10 7 8 9 3brtr4i A . B < C . D