Metamath Proof Explorer


Theorem dplti

Description: Comparing a decimal expansions with the next higher integer. (Contributed by Thierry Arnoux, 16-Dec-2021)

Ref Expression
Hypotheses dplti.a A 0
dplti.b B +
dplti.c C 0
dplti.1 B < 10
dplti.2 A + 1 = C
Assertion dplti A . B < C

Proof

Step Hyp Ref Expression
1 dplti.a A 0
2 dplti.b B +
3 dplti.c C 0
4 dplti.1 B < 10
5 dplti.2 A + 1 = C
6 rpre B + B
7 2 6 ax-mp B
8 1 7 dpval2 A . B = A + B 10
9 10re 10
10 10pos 0 < 10
11 9 10 pm3.2i 10 0 < 10
12 elrp 10 + 10 0 < 10
13 11 12 mpbir 10 +
14 divlt1lt B 10 + B 10 < 1 B < 10
15 7 13 14 mp2an B 10 < 1 B < 10
16 4 15 mpbir B 10 < 1
17 0re 0
18 17 10 gtneii 10 0
19 7 9 18 redivcli B 10
20 1re 1
21 nn0ssre 0
22 21 1 sselii A
23 19 20 22 ltadd2i B 10 < 1 A + B 10 < A + 1
24 16 23 mpbi A + B 10 < A + 1
25 8 24 eqbrtri A . B < A + 1
26 25 5 breqtri A . B < C