Metamath Proof Explorer


Theorem dpmul10

Description: Multiply by 10 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021)

Ref Expression
Hypotheses dpval2.a A 0
dpval2.b B
Assertion dpmul10 Could not format assertion : No typesetting found for |- ( ( A . B ) x. ; 1 0 ) = ; A B with typecode |-

Proof

Step Hyp Ref Expression
1 dpval2.a A 0
2 dpval2.b B
3 2 recni B
4 10nn 10
5 4 nncni 10
6 4 nnne0i 10 0
7 3 5 6 divcan2i 10 B 10 = B
8 7 oveq2i 10 A + 10 B 10 = 10 A + B
9 1 2 dpval2 A . B = A + B 10
10 9 oveq2i 10 A . B = 10 A + B 10
11 dpcl A 0 B A . B
12 1 2 11 mp2an A . B
13 12 recni A . B
14 5 13 mulcomi 10 A . B = A . B 10
15 1 nn0cni A
16 3 5 6 divcli B 10
17 5 15 16 adddii 10 A + B 10 = 10 A + 10 B 10
18 10 14 17 3eqtr3i A . B 10 = 10 A + 10 B 10
19 dfdec10 Could not format ; A B = ( ( ; 1 0 x. A ) + B ) : No typesetting found for |- ; A B = ( ( ; 1 0 x. A ) + B ) with typecode |-
20 8 18 19 3eqtr4i Could not format ( ( A . B ) x. ; 1 0 ) = ; A B : No typesetting found for |- ( ( A . B ) x. ; 1 0 ) = ; A B with typecode |-