Metamath Proof Explorer


Theorem dprd0

Description: The empty family is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypothesis dprd0.0 0 ˙ = 0 G
Assertion dprd0 G Grp G dom DProd G DProd = 0 ˙

Proof

Step Hyp Ref Expression
1 dprd0.0 0 ˙ = 0 G
2 0ex V
3 1 dprdz G Grp V G dom DProd x 0 ˙ G DProd x 0 ˙ = 0 ˙
4 2 3 mpan2 G Grp G dom DProd x 0 ˙ G DProd x 0 ˙ = 0 ˙
5 mpt0 x 0 ˙ =
6 5 breq2i G dom DProd x 0 ˙ G dom DProd
7 5 oveq2i G DProd x 0 ˙ = G DProd
8 7 eqeq1i G DProd x 0 ˙ = 0 ˙ G DProd = 0 ˙
9 6 8 anbi12i G dom DProd x 0 ˙ G DProd x 0 ˙ = 0 ˙ G dom DProd G DProd = 0 ˙
10 4 9 sylib G Grp G dom DProd G DProd = 0 ˙