Metamath Proof Explorer


Theorem dprd2dlem1

Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dprd2d.1 φ Rel A
dprd2d.2 φ S : A SubGrp G
dprd2d.3 φ dom A I
dprd2d.4 φ i I G dom DProd j A i i S j
dprd2d.5 φ G dom DProd i I G DProd j A i i S j
dprd2d.k K = mrCls SubGrp G
dprd2d.6 φ C I
Assertion dprd2dlem1 φ K S A C = G DProd i C G DProd j A i i S j

Proof

Step Hyp Ref Expression
1 dprd2d.1 φ Rel A
2 dprd2d.2 φ S : A SubGrp G
3 dprd2d.3 φ dom A I
4 dprd2d.4 φ i I G dom DProd j A i i S j
5 dprd2d.5 φ G dom DProd i I G DProd j A i i S j
6 dprd2d.k K = mrCls SubGrp G
7 dprd2d.6 φ C I
8 dprdgrp G dom DProd i I G DProd j A i i S j G Grp
9 5 8 syl φ G Grp
10 eqid Base G = Base G
11 10 subgacs G Grp SubGrp G ACS Base G
12 acsmre SubGrp G ACS Base G SubGrp G Moore Base G
13 9 11 12 3syl φ SubGrp G Moore Base G
14 ffun S : A SubGrp G Fun S
15 funiunfv Fun S x A C S x = S A C
16 2 14 15 3syl φ x A C S x = S A C
17 resss A C A
18 17 sseli x A C x A
19 1 2 3 4 5 6 dprd2dlem2 φ x A S x G DProd j A 1 st x 1 st x S j
20 18 19 sylan2 φ x A C S x G DProd j A 1 st x 1 st x S j
21 1st2nd Rel A x A x = 1 st x 2 nd x
22 1 18 21 syl2an φ x A C x = 1 st x 2 nd x
23 simpr φ x A C x A C
24 22 23 eqeltrrd φ x A C 1 st x 2 nd x A C
25 fvex 2 nd x V
26 25 opelresi 1 st x 2 nd x A C 1 st x C 1 st x 2 nd x A
27 26 simplbi 1 st x 2 nd x A C 1 st x C
28 24 27 syl φ x A C 1 st x C
29 ovex G DProd j A 1 st x 1 st x S j V
30 eqid i C G DProd j A i i S j = i C G DProd j A i i S j
31 sneq i = 1 st x i = 1 st x
32 31 imaeq2d i = 1 st x A i = A 1 st x
33 oveq1 i = 1 st x i S j = 1 st x S j
34 32 33 mpteq12dv i = 1 st x j A i i S j = j A 1 st x 1 st x S j
35 34 oveq2d i = 1 st x G DProd j A i i S j = G DProd j A 1 st x 1 st x S j
36 30 35 elrnmpt1s 1 st x C G DProd j A 1 st x 1 st x S j V G DProd j A 1 st x 1 st x S j ran i C G DProd j A i i S j
37 28 29 36 sylancl φ x A C G DProd j A 1 st x 1 st x S j ran i C G DProd j A i i S j
38 elssuni G DProd j A 1 st x 1 st x S j ran i C G DProd j A i i S j G DProd j A 1 st x 1 st x S j ran i C G DProd j A i i S j
39 37 38 syl φ x A C G DProd j A 1 st x 1 st x S j ran i C G DProd j A i i S j
40 20 39 sstrd φ x A C S x ran i C G DProd j A i i S j
41 40 ralrimiva φ x A C S x ran i C G DProd j A i i S j
42 iunss x A C S x ran i C G DProd j A i i S j x A C S x ran i C G DProd j A i i S j
43 41 42 sylibr φ x A C S x ran i C G DProd j A i i S j
44 16 43 eqsstrrd φ S A C ran i C G DProd j A i i S j
45 7 sselda φ i C i I
46 45 4 syldan φ i C G dom DProd j A i i S j
47 ovex i S j V
48 eqid j A i i S j = j A i i S j
49 47 48 dmmpti dom j A i i S j = A i
50 49 a1i φ i C dom j A i i S j = A i
51 imassrn S A C ran S
52 2 frnd φ ran S SubGrp G
53 mresspw SubGrp G Moore Base G SubGrp G 𝒫 Base G
54 13 53 syl φ SubGrp G 𝒫 Base G
55 52 54 sstrd φ ran S 𝒫 Base G
56 51 55 sstrid φ S A C 𝒫 Base G
57 sspwuni S A C 𝒫 Base G S A C Base G
58 56 57 sylib φ S A C Base G
59 6 mrccl SubGrp G Moore Base G S A C Base G K S A C SubGrp G
60 13 58 59 syl2anc φ K S A C SubGrp G
61 60 adantr φ i C K S A C SubGrp G
62 oveq2 j = k i S j = i S k
63 62 48 47 fvmpt3i k A i j A i i S j k = i S k
64 63 adantl φ i C k A i j A i i S j k = i S k
65 df-ov i S k = S i k
66 2 ffnd φ S Fn A
67 66 ad2antrr φ i C k A i S Fn A
68 17 a1i φ i C k A i A C A
69 simplr φ i C k A i i C
70 elrelimasn Rel A k A i i A k
71 1 70 syl φ k A i i A k
72 71 adantr φ i C k A i i A k
73 72 biimpa φ i C k A i i A k
74 df-br i A k i k A
75 73 74 sylib φ i C k A i i k A
76 vex k V
77 76 opelresi i k A C i C i k A
78 69 75 77 sylanbrc φ i C k A i i k A C
79 fnfvima S Fn A A C A i k A C S i k S A C
80 67 68 78 79 syl3anc φ i C k A i S i k S A C
81 65 80 eqeltrid φ i C k A i i S k S A C
82 elssuni i S k S A C i S k S A C
83 81 82 syl φ i C k A i i S k S A C
84 13 6 58 mrcssidd φ S A C K S A C
85 84 ad2antrr φ i C k A i S A C K S A C
86 83 85 sstrd φ i C k A i i S k K S A C
87 64 86 eqsstrd φ i C k A i j A i i S j k K S A C
88 46 50 61 87 dprdlub φ i C G DProd j A i i S j K S A C
89 ovex G DProd j A i i S j V
90 89 elpw G DProd j A i i S j 𝒫 K S A C G DProd j A i i S j K S A C
91 88 90 sylibr φ i C G DProd j A i i S j 𝒫 K S A C
92 91 fmpttd φ i C G DProd j A i i S j : C 𝒫 K S A C
93 92 frnd φ ran i C G DProd j A i i S j 𝒫 K S A C
94 sspwuni ran i C G DProd j A i i S j 𝒫 K S A C ran i C G DProd j A i i S j K S A C
95 93 94 sylib φ ran i C G DProd j A i i S j K S A C
96 13 6 mrcssvd φ K S A C Base G
97 95 96 sstrd φ ran i C G DProd j A i i S j Base G
98 13 6 44 97 mrcssd φ K S A C K ran i C G DProd j A i i S j
99 6 mrcsscl SubGrp G Moore Base G ran i C G DProd j A i i S j K S A C K S A C SubGrp G K ran i C G DProd j A i i S j K S A C
100 13 95 60 99 syl3anc φ K ran i C G DProd j A i i S j K S A C
101 98 100 eqssd φ K S A C = K ran i C G DProd j A i i S j
102 eqid i I G DProd j A i i S j = i I G DProd j A i i S j
103 89 102 dmmpti dom i I G DProd j A i i S j = I
104 103 a1i φ dom i I G DProd j A i i S j = I
105 5 104 7 dprdres φ G dom DProd i I G DProd j A i i S j C G DProd i I G DProd j A i i S j C G DProd i I G DProd j A i i S j
106 105 simpld φ G dom DProd i I G DProd j A i i S j C
107 7 resmptd φ i I G DProd j A i i S j C = i C G DProd j A i i S j
108 106 107 breqtrd φ G dom DProd i C G DProd j A i i S j
109 6 dprdspan G dom DProd i C G DProd j A i i S j G DProd i C G DProd j A i i S j = K ran i C G DProd j A i i S j
110 108 109 syl φ G DProd i C G DProd j A i i S j = K ran i C G DProd j A i i S j
111 101 110 eqtr4d φ K S A C = G DProd i C G DProd j A i i S j