Metamath Proof Explorer


Theorem dprd2dlem2

Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dprd2d.1 φ Rel A
dprd2d.2 φ S : A SubGrp G
dprd2d.3 φ dom A I
dprd2d.4 φ i I G dom DProd j A i i S j
dprd2d.5 φ G dom DProd i I G DProd j A i i S j
dprd2d.k K = mrCls SubGrp G
Assertion dprd2dlem2 φ X A S X G DProd j A 1 st X 1 st X S j

Proof

Step Hyp Ref Expression
1 dprd2d.1 φ Rel A
2 dprd2d.2 φ S : A SubGrp G
3 dprd2d.3 φ dom A I
4 dprd2d.4 φ i I G dom DProd j A i i S j
5 dprd2d.5 φ G dom DProd i I G DProd j A i i S j
6 dprd2d.k K = mrCls SubGrp G
7 df-ov 1 st X S 2 nd X = S 1 st X 2 nd X
8 1st2nd Rel A X A X = 1 st X 2 nd X
9 1 8 sylan φ X A X = 1 st X 2 nd X
10 simpr φ X A X A
11 9 10 eqeltrrd φ X A 1 st X 2 nd X A
12 df-br 1 st X A 2 nd X 1 st X 2 nd X A
13 11 12 sylibr φ X A 1 st X A 2 nd X
14 1 adantr φ X A Rel A
15 elrelimasn Rel A 2 nd X A 1 st X 1 st X A 2 nd X
16 14 15 syl φ X A 2 nd X A 1 st X 1 st X A 2 nd X
17 13 16 mpbird φ X A 2 nd X A 1 st X
18 oveq2 j = 2 nd X 1 st X S j = 1 st X S 2 nd X
19 eqid j A 1 st X 1 st X S j = j A 1 st X 1 st X S j
20 ovex 1 st X S j V
21 18 19 20 fvmpt3i 2 nd X A 1 st X j A 1 st X 1 st X S j 2 nd X = 1 st X S 2 nd X
22 17 21 syl φ X A j A 1 st X 1 st X S j 2 nd X = 1 st X S 2 nd X
23 9 fveq2d φ X A S X = S 1 st X 2 nd X
24 7 22 23 3eqtr4a φ X A j A 1 st X 1 st X S j 2 nd X = S X
25 sneq i = 1 st X i = 1 st X
26 25 imaeq2d i = 1 st X A i = A 1 st X
27 oveq1 i = 1 st X i S j = 1 st X S j
28 26 27 mpteq12dv i = 1 st X j A i i S j = j A 1 st X 1 st X S j
29 28 breq2d i = 1 st X G dom DProd j A i i S j G dom DProd j A 1 st X 1 st X S j
30 4 ralrimiva φ i I G dom DProd j A i i S j
31 30 adantr φ X A i I G dom DProd j A i i S j
32 3 adantr φ X A dom A I
33 1stdm Rel A X A 1 st X dom A
34 1 33 sylan φ X A 1 st X dom A
35 32 34 sseldd φ X A 1 st X I
36 29 31 35 rspcdva φ X A G dom DProd j A 1 st X 1 st X S j
37 20 19 dmmpti dom j A 1 st X 1 st X S j = A 1 st X
38 37 a1i φ X A dom j A 1 st X 1 st X S j = A 1 st X
39 36 38 17 dprdub φ X A j A 1 st X 1 st X S j 2 nd X G DProd j A 1 st X 1 st X S j
40 24 39 eqsstrrd φ X A S X G DProd j A 1 st X 1 st X S j