Step |
Hyp |
Ref |
Expression |
1 |
|
dprdcntz2.1 |
|
2 |
|
dprdcntz2.2 |
|
3 |
|
dprdcntz2.c |
|
4 |
|
dprdcntz2.d |
|
5 |
|
dprdcntz2.i |
|
6 |
|
dprdcntz2.z |
|
7 |
1 2 3
|
dprdres |
|
8 |
7
|
simpld |
|
9 |
|
dmres |
|
10 |
3 2
|
sseqtrrd |
|
11 |
|
df-ss |
|
12 |
10 11
|
sylib |
|
13 |
9 12
|
eqtrid |
|
14 |
|
dprdgrp |
|
15 |
1 14
|
syl |
|
16 |
|
eqid |
|
17 |
16
|
dprdssv |
|
18 |
16 6
|
cntzsubg |
|
19 |
15 17 18
|
sylancl |
|
20 |
|
fvres |
|
21 |
20
|
adantl |
|
22 |
1 2 4
|
dprdres |
|
23 |
22
|
simpld |
|
24 |
23
|
adantr |
|
25 |
|
dprdsubg |
|
26 |
24 25
|
syl |
|
27 |
3
|
sselda |
|
28 |
1 2
|
dprdf2 |
|
29 |
28
|
ffvelrnda |
|
30 |
27 29
|
syldan |
|
31 |
|
dmres |
|
32 |
4 2
|
sseqtrrd |
|
33 |
|
df-ss |
|
34 |
32 33
|
sylib |
|
35 |
31 34
|
eqtrid |
|
36 |
35
|
adantr |
|
37 |
15
|
adantr |
|
38 |
16
|
subgss |
|
39 |
30 38
|
syl |
|
40 |
16 6
|
cntzsubg |
|
41 |
37 39 40
|
syl2anc |
|
42 |
|
fvres |
|
43 |
42
|
adantl |
|
44 |
1
|
ad2antrr |
|
45 |
2
|
ad2antrr |
|
46 |
4
|
adantr |
|
47 |
46
|
sselda |
|
48 |
27
|
adantr |
|
49 |
|
simpr |
|
50 |
|
noel |
|
51 |
|
elin |
|
52 |
5
|
eleq2d |
|
53 |
51 52
|
bitr3id |
|
54 |
50 53
|
mtbiri |
|
55 |
|
imnan |
|
56 |
54 55
|
sylibr |
|
57 |
56
|
imp |
|
58 |
57
|
adantr |
|
59 |
|
nelne2 |
|
60 |
49 58 59
|
syl2anc |
|
61 |
44 45 47 48 60 6
|
dprdcntz |
|
62 |
43 61
|
eqsstrd |
|
63 |
24 36 41 62
|
dprdlub |
|
64 |
6 26 30 63
|
cntzrecd |
|
65 |
21 64
|
eqsstrd |
|
66 |
8 13 19 65
|
dprdlub |
|