Metamath Proof Explorer


Theorem dprddomcld

Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019)

Ref Expression
Hypotheses dprddomcld.1 φ G dom DProd S
dprddomcld.2 φ dom S = I
Assertion dprddomcld φ I V

Proof

Step Hyp Ref Expression
1 dprddomcld.1 φ G dom DProd S
2 dprddomcld.2 φ dom S = I
3 df-nel dom S V ¬ dom S V
4 dprddomprc dom S V ¬ G dom DProd S
5 3 4 sylbir ¬ dom S V ¬ G dom DProd S
6 5 con4i G dom DProd S dom S V
7 eleq1 dom S = I dom S V I V
8 6 7 syl5ib dom S = I G dom DProd S I V
9 2 1 8 sylc φ I V