Metamath Proof Explorer


Theorem dprdf1o

Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdf1o.1 φ G dom DProd S
dprdf1o.2 φ dom S = I
dprdf1o.3 φ F : J 1-1 onto I
Assertion dprdf1o φ G dom DProd S F G DProd S F = G DProd S

Proof

Step Hyp Ref Expression
1 dprdf1o.1 φ G dom DProd S
2 dprdf1o.2 φ dom S = I
3 dprdf1o.3 φ F : J 1-1 onto I
4 eqid Cntz G = Cntz G
5 eqid 0 G = 0 G
6 eqid mrCls SubGrp G = mrCls SubGrp G
7 dprdgrp G dom DProd S G Grp
8 1 7 syl φ G Grp
9 f1of1 F : J 1-1 onto I F : J 1-1 I
10 3 9 syl φ F : J 1-1 I
11 1 2 dprddomcld φ I V
12 f1dmex F : J 1-1 I I V J V
13 10 11 12 syl2anc φ J V
14 1 2 dprdf2 φ S : I SubGrp G
15 f1of F : J 1-1 onto I F : J I
16 3 15 syl φ F : J I
17 fco S : I SubGrp G F : J I S F : J SubGrp G
18 14 16 17 syl2anc φ S F : J SubGrp G
19 1 adantr φ x J y J x y G dom DProd S
20 2 adantr φ x J y J x y dom S = I
21 16 adantr φ x J y J x y F : J I
22 simpr1 φ x J y J x y x J
23 21 22 ffvelrnd φ x J y J x y F x I
24 simpr2 φ x J y J x y y J
25 21 24 ffvelrnd φ x J y J x y F y I
26 simpr3 φ x J y J x y x y
27 10 adantr φ x J y J x y F : J 1-1 I
28 f1fveq F : J 1-1 I x J y J F x = F y x = y
29 27 22 24 28 syl12anc φ x J y J x y F x = F y x = y
30 29 necon3bid φ x J y J x y F x F y x y
31 26 30 mpbird φ x J y J x y F x F y
32 19 20 23 25 31 4 dprdcntz φ x J y J x y S F x Cntz G S F y
33 fvco3 F : J I x J S F x = S F x
34 21 22 33 syl2anc φ x J y J x y S F x = S F x
35 fvco3 F : J I y J S F y = S F y
36 21 24 35 syl2anc φ x J y J x y S F y = S F y
37 36 fveq2d φ x J y J x y Cntz G S F y = Cntz G S F y
38 32 34 37 3sstr4d φ x J y J x y S F x Cntz G S F y
39 16 33 sylan φ x J S F x = S F x
40 imaco S F J x = S F J x
41 3 adantr φ x J F : J 1-1 onto I
42 dff1o3 F : J 1-1 onto I F : J onto I Fun F -1
43 42 simprbi F : J 1-1 onto I Fun F -1
44 imadif Fun F -1 F J x = F J F x
45 41 43 44 3syl φ x J F J x = F J F x
46 f1ofo F : J 1-1 onto I F : J onto I
47 foima F : J onto I F J = I
48 41 46 47 3syl φ x J F J = I
49 f1ofn F : J 1-1 onto I F Fn J
50 3 49 syl φ F Fn J
51 fnsnfv F Fn J x J F x = F x
52 50 51 sylan φ x J F x = F x
53 52 eqcomd φ x J F x = F x
54 48 53 difeq12d φ x J F J F x = I F x
55 45 54 eqtrd φ x J F J x = I F x
56 55 imaeq2d φ x J S F J x = S I F x
57 40 56 eqtrid φ x J S F J x = S I F x
58 57 unieqd φ x J S F J x = S I F x
59 58 fveq2d φ x J mrCls SubGrp G S F J x = mrCls SubGrp G S I F x
60 39 59 ineq12d φ x J S F x mrCls SubGrp G S F J x = S F x mrCls SubGrp G S I F x
61 1 adantr φ x J G dom DProd S
62 2 adantr φ x J dom S = I
63 16 ffvelrnda φ x J F x I
64 61 62 63 5 6 dprddisj φ x J S F x mrCls SubGrp G S I F x = 0 G
65 60 64 eqtrd φ x J S F x mrCls SubGrp G S F J x = 0 G
66 eqimss S F x mrCls SubGrp G S F J x = 0 G S F x mrCls SubGrp G S F J x 0 G
67 65 66 syl φ x J S F x mrCls SubGrp G S F J x 0 G
68 4 5 6 8 13 18 38 67 dmdprdd φ G dom DProd S F
69 rnco2 ran S F = S ran F
70 forn F : J onto I ran F = I
71 3 46 70 3syl φ ran F = I
72 71 imaeq2d φ S ran F = S I
73 ffn S : I SubGrp G S Fn I
74 fnima S Fn I S I = ran S
75 14 73 74 3syl φ S I = ran S
76 72 75 eqtrd φ S ran F = ran S
77 69 76 eqtrid φ ran S F = ran S
78 77 unieqd φ ran S F = ran S
79 78 fveq2d φ mrCls SubGrp G ran S F = mrCls SubGrp G ran S
80 6 dprdspan G dom DProd S F G DProd S F = mrCls SubGrp G ran S F
81 68 80 syl φ G DProd S F = mrCls SubGrp G ran S F
82 6 dprdspan G dom DProd S G DProd S = mrCls SubGrp G ran S
83 1 82 syl φ G DProd S = mrCls SubGrp G ran S
84 79 81 83 3eqtr4d φ G DProd S F = G DProd S
85 68 84 jca φ G dom DProd S F G DProd S F = G DProd S