Step |
Hyp |
Ref |
Expression |
1 |
|
dprdf1o.1 |
|
2 |
|
dprdf1o.2 |
|
3 |
|
dprdf1o.3 |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
dprdgrp |
|
8 |
1 7
|
syl |
|
9 |
|
f1of1 |
|
10 |
3 9
|
syl |
|
11 |
1 2
|
dprddomcld |
|
12 |
|
f1dmex |
|
13 |
10 11 12
|
syl2anc |
|
14 |
1 2
|
dprdf2 |
|
15 |
|
f1of |
|
16 |
3 15
|
syl |
|
17 |
|
fco |
|
18 |
14 16 17
|
syl2anc |
|
19 |
1
|
adantr |
|
20 |
2
|
adantr |
|
21 |
16
|
adantr |
|
22 |
|
simpr1 |
|
23 |
21 22
|
ffvelrnd |
|
24 |
|
simpr2 |
|
25 |
21 24
|
ffvelrnd |
|
26 |
|
simpr3 |
|
27 |
10
|
adantr |
|
28 |
|
f1fveq |
|
29 |
27 22 24 28
|
syl12anc |
|
30 |
29
|
necon3bid |
|
31 |
26 30
|
mpbird |
|
32 |
19 20 23 25 31 4
|
dprdcntz |
|
33 |
|
fvco3 |
|
34 |
21 22 33
|
syl2anc |
|
35 |
|
fvco3 |
|
36 |
21 24 35
|
syl2anc |
|
37 |
36
|
fveq2d |
|
38 |
32 34 37
|
3sstr4d |
|
39 |
16 33
|
sylan |
|
40 |
|
imaco |
|
41 |
3
|
adantr |
|
42 |
|
dff1o3 |
|
43 |
42
|
simprbi |
|
44 |
|
imadif |
|
45 |
41 43 44
|
3syl |
|
46 |
|
f1ofo |
|
47 |
|
foima |
|
48 |
41 46 47
|
3syl |
|
49 |
|
f1ofn |
|
50 |
3 49
|
syl |
|
51 |
|
fnsnfv |
|
52 |
50 51
|
sylan |
|
53 |
52
|
eqcomd |
|
54 |
48 53
|
difeq12d |
|
55 |
45 54
|
eqtrd |
|
56 |
55
|
imaeq2d |
|
57 |
40 56
|
eqtrid |
|
58 |
57
|
unieqd |
|
59 |
58
|
fveq2d |
|
60 |
39 59
|
ineq12d |
|
61 |
1
|
adantr |
|
62 |
2
|
adantr |
|
63 |
16
|
ffvelrnda |
|
64 |
61 62 63 5 6
|
dprddisj |
|
65 |
60 64
|
eqtrd |
|
66 |
|
eqimss |
|
67 |
65 66
|
syl |
|
68 |
4 5 6 8 13 18 38 67
|
dmdprdd |
|
69 |
|
rnco2 |
|
70 |
|
forn |
|
71 |
3 46 70
|
3syl |
|
72 |
71
|
imaeq2d |
|
73 |
|
ffn |
|
74 |
|
fnima |
|
75 |
14 73 74
|
3syl |
|
76 |
72 75
|
eqtrd |
|
77 |
69 76
|
eqtrid |
|
78 |
77
|
unieqd |
|
79 |
78
|
fveq2d |
|
80 |
6
|
dprdspan |
|
81 |
68 80
|
syl |
|
82 |
6
|
dprdspan |
|
83 |
1 82
|
syl |
|
84 |
79 81 83
|
3eqtr4d |
|
85 |
68 84
|
jca |
|