Metamath Proof Explorer


Theorem dprdf2

Description: The function S is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdcntz.1 φ G dom DProd S
dprdcntz.2 φ dom S = I
Assertion dprdf2 φ S : I SubGrp G

Proof

Step Hyp Ref Expression
1 dprdcntz.1 φ G dom DProd S
2 dprdcntz.2 φ dom S = I
3 dprdf G dom DProd S S : dom S SubGrp G
4 1 3 syl φ S : dom S SubGrp G
5 2 feq2d φ S : dom S SubGrp G S : I SubGrp G
6 4 5 mpbid φ S : I SubGrp G