Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Internal direct products
dprdf2
Next ⟩
dprdcntz
Metamath Proof Explorer
Ascii
Unicode
Theorem
dprdf2
Description:
The function
S
is a family of subgroups.
(Contributed by
Mario Carneiro
, 25-Apr-2016)
Ref
Expression
Hypotheses
dprdcntz.1
⊢
φ
→
G
dom
⁡
DProd
S
dprdcntz.2
⊢
φ
→
dom
⁡
S
=
I
Assertion
dprdf2
⊢
φ
→
S
:
I
⟶
SubGrp
⁡
G
Proof
Step
Hyp
Ref
Expression
1
dprdcntz.1
⊢
φ
→
G
dom
⁡
DProd
S
2
dprdcntz.2
⊢
φ
→
dom
⁡
S
=
I
3
dprdf
⊢
G
dom
⁡
DProd
S
→
S
:
dom
⁡
S
⟶
SubGrp
⁡
G
4
1
3
syl
⊢
φ
→
S
:
dom
⁡
S
⟶
SubGrp
⁡
G
5
2
feq2d
⊢
φ
→
S
:
dom
⁡
S
⟶
SubGrp
⁡
G
↔
S
:
I
⟶
SubGrp
⁡
G
6
4
5
mpbid
⊢
φ
→
S
:
I
⟶
SubGrp
⁡
G