Metamath Proof Explorer


Theorem dprdff

Description: A finitely supported function in S is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)

Ref Expression
Hypotheses dprdff.w W = h i I S i | finSupp 0 ˙ h
dprdff.1 φ G dom DProd S
dprdff.2 φ dom S = I
dprdff.3 φ F W
dprdff.b B = Base G
Assertion dprdff φ F : I B

Proof

Step Hyp Ref Expression
1 dprdff.w W = h i I S i | finSupp 0 ˙ h
2 dprdff.1 φ G dom DProd S
3 dprdff.2 φ dom S = I
4 dprdff.3 φ F W
5 dprdff.b B = Base G
6 1 2 3 dprdw φ F W F Fn I x I F x S x finSupp 0 ˙ F
7 4 6 mpbid φ F Fn I x I F x S x finSupp 0 ˙ F
8 7 simp1d φ F Fn I
9 7 simp2d φ x I F x S x
10 2 3 dprdf2 φ S : I SubGrp G
11 10 ffvelrnda φ x I S x SubGrp G
12 5 subgss S x SubGrp G S x B
13 11 12 syl φ x I S x B
14 13 sseld φ x I F x S x F x B
15 14 ralimdva φ x I F x S x x I F x B
16 9 15 mpd φ x I F x B
17 ffnfv F : I B F Fn I x I F x B
18 8 16 17 sylanbrc φ F : I B