Metamath Proof Explorer


Theorem dprdffsupp

Description: A finitely supported function in S is a finitely supported function. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)

Ref Expression
Hypotheses dprdff.w W = h i I S i | finSupp 0 ˙ h
dprdff.1 φ G dom DProd S
dprdff.2 φ dom S = I
dprdff.3 φ F W
Assertion dprdffsupp φ finSupp 0 ˙ F

Proof

Step Hyp Ref Expression
1 dprdff.w W = h i I S i | finSupp 0 ˙ h
2 dprdff.1 φ G dom DProd S
3 dprdff.2 φ dom S = I
4 dprdff.3 φ F W
5 1 2 3 dprdw φ F W F Fn I x I F x S x finSupp 0 ˙ F
6 4 5 mpbid φ F Fn I x I F x S x finSupp 0 ˙ F
7 6 simp3d φ finSupp 0 ˙ F