| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldprdi.0 |  | 
						
							| 2 |  | eldprdi.w |  | 
						
							| 3 |  | eldprdi.1 |  | 
						
							| 4 |  | eldprdi.2 |  | 
						
							| 5 |  | eldprdi.3 |  | 
						
							| 6 |  | dprdfadd.4 |  | 
						
							| 7 |  | dprdfsub.b |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 2 3 4 5 8 | dprdff |  | 
						
							| 10 | 9 | ffvelcdmda |  | 
						
							| 11 | 2 3 4 6 8 | dprdff |  | 
						
							| 12 | 11 | ffvelcdmda |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 8 13 14 7 | grpsubval |  | 
						
							| 16 | 10 12 15 | syl2anc |  | 
						
							| 17 | 16 | mpteq2dva |  | 
						
							| 18 | 3 4 | dprddomcld |  | 
						
							| 19 | 9 | feqmptd |  | 
						
							| 20 | 11 | feqmptd |  | 
						
							| 21 | 18 10 12 19 20 | offval2 |  | 
						
							| 22 |  | fvexd |  | 
						
							| 23 |  | dprdgrp |  | 
						
							| 24 | 3 23 | syl |  | 
						
							| 25 | 8 14 24 | grpinvf1o |  | 
						
							| 26 |  | f1of |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 | 27 | feqmptd |  | 
						
							| 29 |  | fveq2 |  | 
						
							| 30 | 12 20 28 29 | fmptco |  | 
						
							| 31 | 18 10 22 19 30 | offval2 |  | 
						
							| 32 | 17 21 31 | 3eqtr4d |  | 
						
							| 33 | 1 2 3 4 6 14 | dprdfinv |  | 
						
							| 34 | 33 | simpld |  | 
						
							| 35 | 1 2 3 4 5 34 13 | dprdfadd |  | 
						
							| 36 | 35 | simpld |  | 
						
							| 37 | 32 36 | eqeltrd |  | 
						
							| 38 | 32 | oveq2d |  | 
						
							| 39 | 33 | simprd |  | 
						
							| 40 | 39 | oveq2d |  | 
						
							| 41 | 35 | simprd |  | 
						
							| 42 | 8 | dprdssv |  | 
						
							| 43 | 1 2 3 4 5 | eldprdi |  | 
						
							| 44 | 42 43 | sselid |  | 
						
							| 45 | 1 2 3 4 6 | eldprdi |  | 
						
							| 46 | 42 45 | sselid |  | 
						
							| 47 | 8 13 14 7 | grpsubval |  | 
						
							| 48 | 44 46 47 | syl2anc |  | 
						
							| 49 | 40 41 48 | 3eqtr4d |  | 
						
							| 50 | 38 49 | eqtrd |  | 
						
							| 51 | 37 50 | jca |  |