Metamath Proof Explorer


Theorem dprdres

Description: Restriction of a direct product (dropping factors). (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdres.1 φ G dom DProd S
dprdres.2 φ dom S = I
dprdres.3 φ A I
Assertion dprdres φ G dom DProd S A G DProd S A G DProd S

Proof

Step Hyp Ref Expression
1 dprdres.1 φ G dom DProd S
2 dprdres.2 φ dom S = I
3 dprdres.3 φ A I
4 dprdgrp G dom DProd S G Grp
5 1 4 syl φ G Grp
6 1 2 dprdf2 φ S : I SubGrp G
7 6 3 fssresd φ S A : A SubGrp G
8 1 ad2antrr φ x A y A x G dom DProd S
9 2 ad2antrr φ x A y A x dom S = I
10 3 ad2antrr φ x A y A x A I
11 simplr φ x A y A x x A
12 10 11 sseldd φ x A y A x x I
13 eldifi y A x y A
14 13 adantl φ x A y A x y A
15 10 14 sseldd φ x A y A x y I
16 eldifsni y A x y x
17 16 adantl φ x A y A x y x
18 17 necomd φ x A y A x x y
19 eqid Cntz G = Cntz G
20 8 9 12 15 18 19 dprdcntz φ x A y A x S x Cntz G S y
21 11 fvresd φ x A y A x S A x = S x
22 14 fvresd φ x A y A x S A y = S y
23 22 fveq2d φ x A y A x Cntz G S A y = Cntz G S y
24 20 21 23 3sstr4d φ x A y A x S A x Cntz G S A y
25 24 ralrimiva φ x A y A x S A x Cntz G S A y
26 fvres x A S A x = S x
27 26 adantl φ x A S A x = S x
28 27 ineq1d φ x A S A x mrCls SubGrp G S A A x = S x mrCls SubGrp G S A A x
29 eqid Base G = Base G
30 29 subgacs G Grp SubGrp G ACS Base G
31 acsmre SubGrp G ACS Base G SubGrp G Moore Base G
32 5 30 31 3syl φ SubGrp G Moore Base G
33 32 adantr φ x A SubGrp G Moore Base G
34 eqid mrCls SubGrp G = mrCls SubGrp G
35 resss S A S
36 imass1 S A S S A A x S A x
37 35 36 ax-mp S A A x S A x
38 3 adantr φ x A A I
39 ssdif A I A x I x
40 imass2 A x I x S A x S I x
41 38 39 40 3syl φ x A S A x S I x
42 37 41 sstrid φ x A S A A x S I x
43 42 unissd φ x A S A A x S I x
44 imassrn S I x ran S
45 6 frnd φ ran S SubGrp G
46 29 subgss x SubGrp G x Base G
47 velpw x 𝒫 Base G x Base G
48 46 47 sylibr x SubGrp G x 𝒫 Base G
49 48 ssriv SubGrp G 𝒫 Base G
50 45 49 sstrdi φ ran S 𝒫 Base G
51 50 adantr φ x A ran S 𝒫 Base G
52 44 51 sstrid φ x A S I x 𝒫 Base G
53 sspwuni S I x 𝒫 Base G S I x Base G
54 52 53 sylib φ x A S I x Base G
55 33 34 43 54 mrcssd φ x A mrCls SubGrp G S A A x mrCls SubGrp G S I x
56 sslin mrCls SubGrp G S A A x mrCls SubGrp G S I x S x mrCls SubGrp G S A A x S x mrCls SubGrp G S I x
57 55 56 syl φ x A S x mrCls SubGrp G S A A x S x mrCls SubGrp G S I x
58 1 adantr φ x A G dom DProd S
59 2 adantr φ x A dom S = I
60 3 sselda φ x A x I
61 eqid 0 G = 0 G
62 58 59 60 61 34 dprddisj φ x A S x mrCls SubGrp G S I x = 0 G
63 57 62 sseqtrd φ x A S x mrCls SubGrp G S A A x 0 G
64 6 ffvelrnda φ x I S x SubGrp G
65 60 64 syldan φ x A S x SubGrp G
66 61 subg0cl S x SubGrp G 0 G S x
67 65 66 syl φ x A 0 G S x
68 43 54 sstrd φ x A S A A x Base G
69 34 mrccl SubGrp G Moore Base G S A A x Base G mrCls SubGrp G S A A x SubGrp G
70 33 68 69 syl2anc φ x A mrCls SubGrp G S A A x SubGrp G
71 61 subg0cl mrCls SubGrp G S A A x SubGrp G 0 G mrCls SubGrp G S A A x
72 70 71 syl φ x A 0 G mrCls SubGrp G S A A x
73 67 72 elind φ x A 0 G S x mrCls SubGrp G S A A x
74 73 snssd φ x A 0 G S x mrCls SubGrp G S A A x
75 63 74 eqssd φ x A S x mrCls SubGrp G S A A x = 0 G
76 28 75 eqtrd φ x A S A x mrCls SubGrp G S A A x = 0 G
77 25 76 jca φ x A y A x S A x Cntz G S A y S A x mrCls SubGrp G S A A x = 0 G
78 77 ralrimiva φ x A y A x S A x Cntz G S A y S A x mrCls SubGrp G S A A x = 0 G
79 1 2 dprddomcld φ I V
80 79 3 ssexd φ A V
81 7 fdmd φ dom S A = A
82 19 61 34 dmdprd A V dom S A = A G dom DProd S A G Grp S A : A SubGrp G x A y A x S A x Cntz G S A y S A x mrCls SubGrp G S A A x = 0 G
83 80 81 82 syl2anc φ G dom DProd S A G Grp S A : A SubGrp G x A y A x S A x Cntz G S A y S A x mrCls SubGrp G S A A x = 0 G
84 5 7 78 83 mpbir3and φ G dom DProd S A
85 rnss S A S ran S A ran S
86 uniss ran S A ran S ran S A ran S
87 35 85 86 mp2b ran S A ran S
88 87 a1i φ ran S A ran S
89 sspwuni ran S 𝒫 Base G ran S Base G
90 50 89 sylib φ ran S Base G
91 32 34 88 90 mrcssd φ mrCls SubGrp G ran S A mrCls SubGrp G ran S
92 34 dprdspan G dom DProd S A G DProd S A = mrCls SubGrp G ran S A
93 84 92 syl φ G DProd S A = mrCls SubGrp G ran S A
94 34 dprdspan G dom DProd S G DProd S = mrCls SubGrp G ran S
95 1 94 syl φ G DProd S = mrCls SubGrp G ran S
96 91 93 95 3sstr4d φ G DProd S A G DProd S
97 84 96 jca φ G dom DProd S A G DProd S A G DProd S