Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
|
subgrcl |
|
5 |
4
|
adantl |
|
6 |
|
snex |
|
7 |
6
|
a1i |
|
8 |
|
f1osng |
|
9 |
|
f1of |
|
10 |
8 9
|
syl |
|
11 |
|
simpr |
|
12 |
11
|
snssd |
|
13 |
10 12
|
fssd |
|
14 |
|
simpr1 |
|
15 |
|
elsni |
|
16 |
14 15
|
syl |
|
17 |
|
simpr2 |
|
18 |
|
elsni |
|
19 |
17 18
|
syl |
|
20 |
16 19
|
eqtr4d |
|
21 |
|
simpr3 |
|
22 |
20 21
|
pm2.21ddne |
|
23 |
5
|
adantr |
|
24 |
|
eqid |
|
25 |
24
|
subgacs |
|
26 |
|
acsmre |
|
27 |
23 25 26
|
3syl |
|
28 |
15
|
adantl |
|
29 |
28
|
sneqd |
|
30 |
29
|
difeq2d |
|
31 |
|
difid |
|
32 |
30 31
|
eqtrdi |
|
33 |
32
|
imaeq2d |
|
34 |
|
ima0 |
|
35 |
33 34
|
eqtrdi |
|
36 |
35
|
unieqd |
|
37 |
|
uni0 |
|
38 |
36 37
|
eqtrdi |
|
39 |
|
0ss |
|
40 |
39
|
a1i |
|
41 |
38 40
|
eqsstrd |
|
42 |
2
|
0subg |
|
43 |
23 42
|
syl |
|
44 |
3
|
mrcsscl |
|
45 |
27 41 43 44
|
syl3anc |
|
46 |
2
|
subg0cl |
|
47 |
46
|
ad2antlr |
|
48 |
15
|
fveq2d |
|
49 |
|
fvsng |
|
50 |
48 49
|
sylan9eqr |
|
51 |
47 50
|
eleqtrrd |
|
52 |
51
|
snssd |
|
53 |
45 52
|
sstrd |
|
54 |
|
sseqin2 |
|
55 |
53 54
|
sylib |
|
56 |
55 45
|
eqsstrd |
|
57 |
1 2 3 5 7 13 22 56
|
dmdprdd |
|
58 |
3
|
dprdspan |
|
59 |
57 58
|
syl |
|
60 |
|
rnsnopg |
|
61 |
60
|
adantr |
|
62 |
61
|
unieqd |
|
63 |
|
unisng |
|
64 |
63
|
adantl |
|
65 |
62 64
|
eqtrd |
|
66 |
65
|
fveq2d |
|
67 |
5 25 26
|
3syl |
|
68 |
3
|
mrcid |
|
69 |
67 68
|
sylancom |
|
70 |
66 69
|
eqtrd |
|
71 |
59 70
|
eqtrd |
|
72 |
57 71
|
jca |
|