Metamath Proof Explorer


Theorem dprdspan

Description: The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypothesis dprdspan.k K = mrCls SubGrp G
Assertion dprdspan G dom DProd S G DProd S = K ran S

Proof

Step Hyp Ref Expression
1 dprdspan.k K = mrCls SubGrp G
2 id G dom DProd S G dom DProd S
3 eqidd G dom DProd S dom S = dom S
4 dprdgrp G dom DProd S G Grp
5 eqid Base G = Base G
6 5 subgacs G Grp SubGrp G ACS Base G
7 acsmre SubGrp G ACS Base G SubGrp G Moore Base G
8 4 6 7 3syl G dom DProd S SubGrp G Moore Base G
9 dprdf G dom DProd S S : dom S SubGrp G
10 9 ffnd G dom DProd S S Fn dom S
11 fniunfv S Fn dom S k dom S S k = ran S
12 10 11 syl G dom DProd S k dom S S k = ran S
13 simpl G dom DProd S k dom S G dom DProd S
14 eqidd G dom DProd S k dom S dom S = dom S
15 simpr G dom DProd S k dom S k dom S
16 13 14 15 dprdub G dom DProd S k dom S S k G DProd S
17 16 ralrimiva G dom DProd S k dom S S k G DProd S
18 iunss k dom S S k G DProd S k dom S S k G DProd S
19 17 18 sylibr G dom DProd S k dom S S k G DProd S
20 12 19 eqsstrrd G dom DProd S ran S G DProd S
21 5 dprdssv G DProd S Base G
22 20 21 sstrdi G dom DProd S ran S Base G
23 1 mrccl SubGrp G Moore Base G ran S Base G K ran S SubGrp G
24 8 22 23 syl2anc G dom DProd S K ran S SubGrp G
25 eqimss k dom S S k = ran S k dom S S k ran S
26 12 25 syl G dom DProd S k dom S S k ran S
27 iunss k dom S S k ran S k dom S S k ran S
28 26 27 sylib G dom DProd S k dom S S k ran S
29 28 r19.21bi G dom DProd S k dom S S k ran S
30 8 1 22 mrcssidd G dom DProd S ran S K ran S
31 30 adantr G dom DProd S k dom S ran S K ran S
32 29 31 sstrd G dom DProd S k dom S S k K ran S
33 2 3 24 32 dprdlub G dom DProd S G DProd S K ran S
34 dprdsubg G dom DProd S G DProd S SubGrp G
35 1 mrcsscl SubGrp G Moore Base G ran S G DProd S G DProd S SubGrp G K ran S G DProd S
36 8 20 34 35 syl3anc G dom DProd S K ran S G DProd S
37 33 36 eqssd G dom DProd S G DProd S = K ran S