Description: The direct product is the binary subgroup product ("sum") of the direct products of the partition. (Contributed by Mario Carneiro, 25-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dprdsplit.2 | |
|
dprdsplit.i | |
||
dprdsplit.u | |
||
dprdsplit.s | |
||
dprdsplit.1 | |
||
Assertion | dprdsplit | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdsplit.2 | |
|
2 | dprdsplit.i | |
|
3 | dprdsplit.u | |
|
4 | dprdsplit.s | |
|
5 | dprdsplit.1 | |
|
6 | 1 | fdmd | |
7 | ssun1 | |
|
8 | 7 3 | sseqtrrid | |
9 | 5 6 8 | dprdres | |
10 | 9 | simpld | |
11 | dprdsubg | |
|
12 | 10 11 | syl | |
13 | ssun2 | |
|
14 | 13 3 | sseqtrrid | |
15 | 5 6 14 | dprdres | |
16 | 15 | simpld | |
17 | dprdsubg | |
|
18 | 16 17 | syl | |
19 | eqid | |
|
20 | eqid | |
|
21 | 1 2 3 19 20 | dmdprdsplit | |
22 | 5 21 | mpbid | |
23 | 22 | simp2d | |
24 | 4 19 | lsmsubg | |
25 | 12 18 23 24 | syl3anc | |
26 | 3 | eleq2d | |
27 | elun | |
|
28 | 26 27 | bitrdi | |
29 | 28 | biimpa | |
30 | fvres | |
|
31 | 30 | adantl | |
32 | 10 | adantr | |
33 | 1 8 | fssresd | |
34 | 33 | fdmd | |
35 | 34 | adantr | |
36 | simpr | |
|
37 | 32 35 36 | dprdub | |
38 | 31 37 | eqsstrrd | |
39 | 4 | lsmub1 | |
40 | 12 18 39 | syl2anc | |
41 | 40 | adantr | |
42 | 38 41 | sstrd | |
43 | fvres | |
|
44 | 43 | adantl | |
45 | 16 | adantr | |
46 | 1 14 | fssresd | |
47 | 46 | fdmd | |
48 | 47 | adantr | |
49 | simpr | |
|
50 | 45 48 49 | dprdub | |
51 | 44 50 | eqsstrrd | |
52 | 4 | lsmub2 | |
53 | 12 18 52 | syl2anc | |
54 | 53 | adantr | |
55 | 51 54 | sstrd | |
56 | 42 55 | jaodan | |
57 | 29 56 | syldan | |
58 | 5 6 25 57 | dprdlub | |
59 | 9 | simprd | |
60 | 15 | simprd | |
61 | dprdsubg | |
|
62 | 5 61 | syl | |
63 | 4 | lsmlub | |
64 | 12 18 62 63 | syl3anc | |
65 | 59 60 64 | mpbi2and | |
66 | 58 65 | eqssd | |