Metamath Proof Explorer


Theorem dprdssv

Description: The internal direct product of a family of subgroups is a subset of the base. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypothesis dprdssv.b B = Base G
Assertion dprdssv G DProd S B

Proof

Step Hyp Ref Expression
1 dprdssv.b B = Base G
2 eqid dom S = dom S
3 eqid 0 G = 0 G
4 eqid h i dom S S i | finSupp 0 G h = h i dom S S i | finSupp 0 G h
5 3 4 eldprd dom S = dom S x G DProd S G dom DProd S f h i dom S S i | finSupp 0 G h x = G f
6 2 5 ax-mp x G DProd S G dom DProd S f h i dom S S i | finSupp 0 G h x = G f
7 eqid Cntz G = Cntz G
8 dprdgrp G dom DProd S G Grp
9 8 grpmndd G dom DProd S G Mnd
10 9 adantr G dom DProd S f h i dom S S i | finSupp 0 G h G Mnd
11 reldmdprd Rel dom DProd
12 11 brrelex2i G dom DProd S S V
13 12 dmexd G dom DProd S dom S V
14 13 adantr G dom DProd S f h i dom S S i | finSupp 0 G h dom S V
15 simpl G dom DProd S f h i dom S S i | finSupp 0 G h G dom DProd S
16 eqidd G dom DProd S f h i dom S S i | finSupp 0 G h dom S = dom S
17 simpr G dom DProd S f h i dom S S i | finSupp 0 G h f h i dom S S i | finSupp 0 G h
18 4 15 16 17 1 dprdff G dom DProd S f h i dom S S i | finSupp 0 G h f : dom S B
19 4 15 16 17 7 dprdfcntz G dom DProd S f h i dom S S i | finSupp 0 G h ran f Cntz G ran f
20 4 15 16 17 dprdffsupp G dom DProd S f h i dom S S i | finSupp 0 G h finSupp 0 G f
21 1 3 7 10 14 18 19 20 gsumzcl G dom DProd S f h i dom S S i | finSupp 0 G h G f B
22 eleq1 x = G f x B G f B
23 21 22 syl5ibrcom G dom DProd S f h i dom S S i | finSupp 0 G h x = G f x B
24 23 rexlimdva G dom DProd S f h i dom S S i | finSupp 0 G h x = G f x B
25 24 imp G dom DProd S f h i dom S S i | finSupp 0 G h x = G f x B
26 6 25 sylbi x G DProd S x B
27 26 ssriv G DProd S B