Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
1
|
dprdssv |
|
3 |
2
|
a1i |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
id |
|
7 |
|
eqidd |
|
8 |
|
fvex |
|
9 |
|
fnconstg |
|
10 |
8 9
|
mp1i |
|
11 |
8
|
fvconst2 |
|
12 |
11
|
adantl |
|
13 |
|
dprdf |
|
14 |
13
|
ffvelrnda |
|
15 |
4
|
subg0cl |
|
16 |
14 15
|
syl |
|
17 |
12 16
|
eqeltrd |
|
18 |
17
|
ralrimiva |
|
19 |
|
df-nel |
|
20 |
|
dprddomprc |
|
21 |
19 20
|
sylbir |
|
22 |
21
|
con4i |
|
23 |
8
|
a1i |
|
24 |
22 23
|
fczfsuppd |
|
25 |
5 6 7
|
dprdw |
|
26 |
10 18 24 25
|
mpbir3and |
|
27 |
4 5 6 7 26
|
eldprdi |
|
28 |
27
|
ne0d |
|
29 |
|
eqid |
|
30 |
4 5
|
eldprd |
|
31 |
30
|
baibd |
|
32 |
4 5
|
eldprd |
|
33 |
32
|
baibd |
|
34 |
31 33
|
anbi12d |
|
35 |
29 34
|
mpan |
|
36 |
|
reeanv |
|
37 |
|
simpl |
|
38 |
|
eqidd |
|
39 |
|
simprl |
|
40 |
|
simprr |
|
41 |
|
eqid |
|
42 |
4 5 37 38 39 40 41
|
dprdfsub |
|
43 |
42
|
simprd |
|
44 |
42
|
simpld |
|
45 |
4 5 37 38 44
|
eldprdi |
|
46 |
43 45
|
eqeltrrd |
|
47 |
|
oveq12 |
|
48 |
47
|
eleq1d |
|
49 |
46 48
|
syl5ibrcom |
|
50 |
49
|
rexlimdvva |
|
51 |
36 50
|
syl5bir |
|
52 |
35 51
|
sylbid |
|
53 |
52
|
ralrimivv |
|
54 |
|
dprdgrp |
|
55 |
1 41
|
issubg4 |
|
56 |
54 55
|
syl |
|
57 |
3 28 53 56
|
mpbir3and |
|