Metamath Proof Explorer


Theorem dprdwd

Description: A mapping being a finitely supported function in the family S . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019) (Proof shortened by OpenAI, 30-Mar-2020)

Ref Expression
Hypotheses dprdff.w W = h i I S i | finSupp 0 ˙ h
dprdff.1 φ G dom DProd S
dprdff.2 φ dom S = I
dprdwd.3 φ x I A S x
dprdwd.4 φ finSupp 0 ˙ x I A
Assertion dprdwd φ x I A W

Proof

Step Hyp Ref Expression
1 dprdff.w W = h i I S i | finSupp 0 ˙ h
2 dprdff.1 φ G dom DProd S
3 dprdff.2 φ dom S = I
4 dprdwd.3 φ x I A S x
5 dprdwd.4 φ finSupp 0 ˙ x I A
6 breq1 h = x I A finSupp 0 ˙ h finSupp 0 ˙ x I A
7 4 ralrimiva φ x I A S x
8 2 3 dprddomcld φ I V
9 mptelixpg I V x I A x I S x x I A S x
10 8 9 syl φ x I A x I S x x I A S x
11 7 10 mpbird φ x I A x I S x
12 fveq2 x = i S x = S i
13 12 cbvixpv x I S x = i I S i
14 11 13 eleqtrdi φ x I A i I S i
15 6 14 5 elrabd φ x I A h i I S i | finSupp 0 ˙ h
16 15 1 eleqtrrdi φ x I A W