Step |
Hyp |
Ref |
Expression |
1 |
|
dprd0.0 |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
|
simpl |
|
5 |
|
simpr |
|
6 |
1
|
0subg |
|
7 |
6
|
ad2antrr |
|
8 |
7
|
fmpttd |
|
9 |
|
eqid |
|
10 |
9 1
|
grpidcl |
|
11 |
10
|
adantr |
|
12 |
11
|
snssd |
|
13 |
9 2
|
cntzsubg |
|
14 |
12 13
|
syldan |
|
15 |
1
|
subg0cl |
|
16 |
14 15
|
syl |
|
17 |
16
|
snssd |
|
18 |
17
|
adantr |
|
19 |
|
simpr1 |
|
20 |
|
eqidd |
|
21 |
|
eqid |
|
22 |
|
snex |
|
23 |
20 21 22
|
fvmpt3i |
|
24 |
19 23
|
syl |
|
25 |
|
simpr2 |
|
26 |
|
eqidd |
|
27 |
26 21 22
|
fvmpt3i |
|
28 |
25 27
|
syl |
|
29 |
28
|
fveq2d |
|
30 |
18 24 29
|
3sstr4d |
|
31 |
23
|
adantl |
|
32 |
31
|
ineq1d |
|
33 |
9
|
subgacs |
|
34 |
33
|
ad2antrr |
|
35 |
34
|
acsmred |
|
36 |
|
imassrn |
|
37 |
8
|
adantr |
|
38 |
37
|
frnd |
|
39 |
|
mresspw |
|
40 |
35 39
|
syl |
|
41 |
38 40
|
sstrd |
|
42 |
36 41
|
sstrid |
|
43 |
|
sspwuni |
|
44 |
42 43
|
sylib |
|
45 |
3
|
mrccl |
|
46 |
35 44 45
|
syl2anc |
|
47 |
1
|
subg0cl |
|
48 |
46 47
|
syl |
|
49 |
48
|
snssd |
|
50 |
|
df-ss |
|
51 |
49 50
|
sylib |
|
52 |
32 51
|
eqtrd |
|
53 |
|
eqimss |
|
54 |
52 53
|
syl |
|
55 |
2 1 3 4 5 8 30 54
|
dmdprdd |
|
56 |
21 7
|
dmmptd |
|
57 |
6
|
adantr |
|
58 |
|
eqimss |
|
59 |
31 58
|
syl |
|
60 |
55 56 57 59
|
dprdlub |
|
61 |
|
dprdsubg |
|
62 |
1
|
subg0cl |
|
63 |
55 61 62
|
3syl |
|
64 |
63
|
snssd |
|
65 |
60 64
|
eqssd |
|
66 |
55 65
|
jca |
|