Metamath Proof Explorer


Theorem dral1ALT

Description: Alternate proof of dral1 , shorter but requiring ax-11 . (Contributed by NM, 24-Nov-1994) (Proof shortened by Wolf Lammen, 22-Apr-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis dral1.1 x x = y φ ψ
Assertion dral1ALT x x = y x φ y ψ

Proof

Step Hyp Ref Expression
1 dral1.1 x x = y φ ψ
2 1 dral2 x x = y x φ x ψ
3 axc11 x x = y x ψ y ψ
4 axc11r x x = y y ψ x ψ
5 3 4 impbid x x = y x ψ y ψ
6 2 5 bitrd x x = y x φ y ψ