Metamath Proof Explorer


Theorem dral1v

Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Version of dral1 with a disjoint variable condition, which does not require ax-13 . Remark: the corresponding versions for dral2 and drex2 are instances of albidv and exbidv respectively. (Contributed by NM, 24-Nov-1994) (Revised by BJ, 17-Jun-2019) Base the proof on ax12v . (Revised by Wolf Lammen, 30-Mar-2024)

Ref Expression
Hypothesis dral1v.1 x x = y φ ψ
Assertion dral1v x x = y x φ y ψ

Proof

Step Hyp Ref Expression
1 dral1v.1 x x = y φ ψ
2 nfa1 x x x = y
3 2 1 albid x x = y x φ x ψ
4 axc11v x x = y x ψ y ψ
5 axc11rv x x = y y ψ x ψ
6 4 5 impbid x x = y x ψ y ψ
7 3 6 bitrd x x = y x φ y ψ