Metamath Proof Explorer


Theorem drnf1

Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker drnf1v if possible. (Contributed by Mario Carneiro, 4-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypothesis dral1.1 x x = y φ ψ
Assertion drnf1 x x = y x φ y ψ

Proof

Step Hyp Ref Expression
1 dral1.1 x x = y φ ψ
2 1 dral1 x x = y x φ y ψ
3 1 2 imbi12d x x = y φ x φ ψ y ψ
4 3 dral1 x x = y x φ x φ y ψ y ψ
5 nf5 x φ x φ x φ
6 nf5 y ψ y ψ y ψ
7 4 5 6 3bitr4g x x = y x φ y ψ