Database
BASIC ALGEBRAIC STRUCTURES
Ideals
Left regular elements. More kinds of rings
drngdomn
Next ⟩
isidom
Metamath Proof Explorer
Ascii
Unicode
Theorem
drngdomn
Description:
A division ring is a domain.
(Contributed by
Mario Carneiro
, 29-Mar-2015)
Ref
Expression
Assertion
drngdomn
⊢
R
∈
DivRing
→
R
∈
Domn
Proof
Step
Hyp
Ref
Expression
1
drngnzr
⊢
R
∈
DivRing
→
R
∈
NzRing
2
eqid
⊢
Base
R
=
Base
R
3
eqid
⊢
Unit
⁡
R
=
Unit
⁡
R
4
eqid
⊢
0
R
=
0
R
5
2
3
4
isdrng
⊢
R
∈
DivRing
↔
R
∈
Ring
∧
Unit
⁡
R
=
Base
R
∖
0
R
6
5
simprbi
⊢
R
∈
DivRing
→
Unit
⁡
R
=
Base
R
∖
0
R
7
drngring
⊢
R
∈
DivRing
→
R
∈
Ring
8
eqid
⊢
RLReg
⁡
R
=
RLReg
⁡
R
9
8
3
unitrrg
⊢
R
∈
Ring
→
Unit
⁡
R
⊆
RLReg
⁡
R
10
7
9
syl
⊢
R
∈
DivRing
→
Unit
⁡
R
⊆
RLReg
⁡
R
11
6
10
eqsstrrd
⊢
R
∈
DivRing
→
Base
R
∖
0
R
⊆
RLReg
⁡
R
12
2
8
4
isdomn2
⊢
R
∈
Domn
↔
R
∈
NzRing
∧
Base
R
∖
0
R
⊆
RLReg
⁡
R
13
1
11
12
sylanbrc
⊢
R
∈
DivRing
→
R
∈
Domn