Metamath Proof Explorer


Theorem drngdomn

Description: A division ring is a domain. (Contributed by Mario Carneiro, 29-Mar-2015)

Ref Expression
Assertion drngdomn R DivRing R Domn

Proof

Step Hyp Ref Expression
1 drngnzr R DivRing R NzRing
2 eqid Base R = Base R
3 eqid Unit R = Unit R
4 eqid 0 R = 0 R
5 2 3 4 isdrng R DivRing R Ring Unit R = Base R 0 R
6 5 simprbi R DivRing Unit R = Base R 0 R
7 drngring R DivRing R Ring
8 eqid RLReg R = RLReg R
9 8 3 unitrrg R Ring Unit R RLReg R
10 7 9 syl R DivRing Unit R RLReg R
11 6 10 eqsstrrd R DivRing Base R 0 R RLReg R
12 2 8 4 isdomn2 R Domn R NzRing Base R 0 R RLReg R
13 1 11 12 sylanbrc R DivRing R Domn