Step |
Hyp |
Ref |
Expression |
1 |
|
drngidl.b |
|
2 |
|
drngidl.z |
|
3 |
|
drngidl.u |
|
4 |
1 2 3
|
drngnidl |
|
5 |
4
|
adantl |
|
6 |
|
eqid |
|
7 |
6 2
|
nzrnz |
|
8 |
7
|
adantr |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
nzrring |
|
12 |
11
|
adantr |
|
13 |
12
|
adantr |
|
14 |
13
|
ad4antr |
|
15 |
|
simp-4r |
|
16 |
|
simplr |
|
17 |
|
simpr |
|
18 |
17
|
eldifad |
|
19 |
18
|
ad2antrr |
|
20 |
19
|
ad2antrr |
|
21 |
|
simpr |
|
22 |
21
|
eqcomd |
|
23 |
|
simpr |
|
24 |
23
|
eqcomd |
|
25 |
24
|
ad2antrr |
|
26 |
1 2 6 9 10 14 15 16 20 22 25
|
ringinveu |
|
27 |
26
|
oveq1d |
|
28 |
27 22
|
eqtrd |
|
29 |
13
|
ad2antrr |
|
30 |
|
simplr |
|
31 |
1 6
|
ringidcl |
|
32 |
13 31
|
syl |
|
33 |
32
|
ad2antrr |
|
34 |
30
|
snssd |
|
35 |
|
eqid |
|
36 |
35 1 3
|
rspcl |
|
37 |
29 34 36
|
syl2anc |
|
38 |
|
simp-4r |
|
39 |
37 38
|
eleqtrd |
|
40 |
|
elpri |
|
41 |
39 40
|
syl |
|
42 |
|
simplr |
|
43 |
|
simpr |
|
44 |
43
|
oveq1d |
|
45 |
1 9 2
|
ringlz |
|
46 |
13 18 45
|
syl2anc |
|
47 |
46
|
ad3antrrr |
|
48 |
42 44 47
|
3eqtrd |
|
49 |
8
|
ad4antr |
|
50 |
49
|
neneqd |
|
51 |
48 50
|
pm2.65da |
|
52 |
51
|
neqned |
|
53 |
1 2 35
|
pidlnz |
|
54 |
29 30 52 53
|
syl3anc |
|
55 |
54
|
neneqd |
|
56 |
41 55
|
orcnd |
|
57 |
33 56
|
eleqtrrd |
|
58 |
1 9 35
|
rspsnel |
|
59 |
58
|
biimpa |
|
60 |
29 30 57 59
|
syl21anc |
|
61 |
28 60
|
r19.29a |
|
62 |
61 24
|
jca |
|
63 |
62
|
anasss |
|
64 |
18
|
snssd |
|
65 |
35 1 3
|
rspcl |
|
66 |
13 64 65
|
syl2anc |
|
67 |
|
simplr |
|
68 |
66 67
|
eleqtrd |
|
69 |
|
elpri |
|
70 |
68 69
|
syl |
|
71 |
|
eldifsni |
|
72 |
71
|
adantl |
|
73 |
1 2 35
|
pidlnz |
|
74 |
13 18 72 73
|
syl3anc |
|
75 |
74
|
neneqd |
|
76 |
70 75
|
orcnd |
|
77 |
32 76
|
eleqtrrd |
|
78 |
1 9 35
|
rspsnel |
|
79 |
78
|
biimpa |
|
80 |
13 18 77 79
|
syl21anc |
|
81 |
63 80
|
reximddv |
|
82 |
81
|
ralrimiva |
|
83 |
1 2 6 9 10 12
|
isdrng4 |
|
84 |
8 82 83
|
mpbir2and |
|
85 |
5 84
|
impbida |
|