Metamath Proof Explorer


Theorem drngidlhash

Description: A ring is a division ring if and only if it admits exactly two ideals. (Proposed by Gerard Lang, 13-Mar-2025.) (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypothesis drngidlhash.u U = LIdeal R
Assertion drngidlhash R Ring R DivRing U = 2

Proof

Step Hyp Ref Expression
1 drngidlhash.u U = LIdeal R
2 eqid Base R = Base R
3 eqid 0 R = 0 R
4 2 3 1 drngnidl R DivRing U = 0 R Base R
5 4 fveq2d R DivRing U = 0 R Base R
6 drngnzr R DivRing R NzRing
7 nzrring R NzRing R Ring
8 eqid 1 R = 1 R
9 2 8 ringidcl R Ring 1 R Base R
10 7 9 syl R NzRing 1 R Base R
11 8 3 nzrnz R NzRing 1 R 0 R
12 nelsn 1 R 0 R ¬ 1 R 0 R
13 11 12 syl R NzRing ¬ 1 R 0 R
14 nelne1 1 R Base R ¬ 1 R 0 R Base R 0 R
15 10 13 14 syl2anc R NzRing Base R 0 R
16 15 necomd R NzRing 0 R Base R
17 6 16 syl R DivRing 0 R Base R
18 snex 0 R V
19 fvex Base R V
20 hashprg 0 R V Base R V 0 R Base R 0 R Base R = 2
21 18 19 20 mp2an 0 R Base R 0 R Base R = 2
22 17 21 sylib R DivRing 0 R Base R = 2
23 5 22 eqtrd R DivRing U = 2
24 23 adantl R Ring R DivRing U = 2
25 simpl R Ring U = 2 R Ring
26 simplr R Ring U = 2 0 R = Base R U = 2
27 2re 2
28 26 27 eqeltrdi R Ring U = 2 0 R = Base R U
29 simpl R Ring 0 R = Base R R Ring
30 simpr R Ring 0 R = Base R 0 R = Base R
31 30 fveq2d R Ring 0 R = Base R 0 R = Base R
32 fvex 0 R V
33 hashsng 0 R V 0 R = 1
34 32 33 ax-mp 0 R = 1
35 31 34 eqtr3di R Ring 0 R = Base R Base R = 1
36 2 3 0ringidl R Ring Base R = 1 LIdeal R = 0 R
37 29 35 36 syl2anc R Ring 0 R = Base R LIdeal R = 0 R
38 1 37 eqtrid R Ring 0 R = Base R U = 0 R
39 38 fveq2d R Ring 0 R = Base R U = 0 R
40 hashsng 0 R V 0 R = 1
41 18 40 ax-mp 0 R = 1
42 39 41 eqtrdi R Ring 0 R = Base R U = 1
43 42 adantlr R Ring U = 2 0 R = Base R U = 1
44 1lt2 1 < 2
45 43 44 eqbrtrdi R Ring U = 2 0 R = Base R U < 2
46 28 45 ltned R Ring U = 2 0 R = Base R U 2
47 46 neneqd R Ring U = 2 0 R = Base R ¬ U = 2
48 26 47 pm2.65da R Ring U = 2 ¬ 0 R = Base R
49 48 neqned R Ring U = 2 0 R Base R
50 2 3 8 01eq0ring R Ring 0 R = 1 R Base R = 0 R
51 50 eqcomd R Ring 0 R = 1 R 0 R = Base R
52 51 ex R Ring 0 R = 1 R 0 R = Base R
53 52 necon3d R Ring 0 R Base R 0 R 1 R
54 25 49 53 sylc R Ring U = 2 0 R 1 R
55 54 necomd R Ring U = 2 1 R 0 R
56 8 3 isnzr R NzRing R Ring 1 R 0 R
57 25 55 56 sylanbrc R Ring U = 2 R NzRing
58 1 fvexi U V
59 58 a1i R Ring U = 2 U V
60 simpr R Ring U = 2 U = 2
61 1 3 lidl0 R Ring 0 R U
62 25 61 syl R Ring U = 2 0 R U
63 1 2 lidl1 R Ring Base R U
64 25 63 syl R Ring U = 2 Base R U
65 hash2prd U V U = 2 0 R U Base R U 0 R Base R U = 0 R Base R
66 65 imp U V U = 2 0 R U Base R U 0 R Base R U = 0 R Base R
67 59 60 62 64 49 66 syl23anc R Ring U = 2 U = 0 R Base R
68 2 3 1 drngidl R NzRing R DivRing U = 0 R Base R
69 68 biimpar R NzRing U = 0 R Base R R DivRing
70 57 67 69 syl2anc R Ring U = 2 R DivRing
71 24 70 impbida R Ring R DivRing U = 2