Metamath Proof Explorer


Theorem drnglidl1ne0

Description: In a nonzero ring, the zero ideal is different of the unit ideal. (Contributed by Thierry Arnoux, 16-Mar-2025)

Ref Expression
Hypotheses drnglidl1ne0.1 0 ˙ = 0 R
drnglidl1ne0.2 B = Base R
Assertion drnglidl1ne0 R NzRing B 0 ˙

Proof

Step Hyp Ref Expression
1 drnglidl1ne0.1 0 ˙ = 0 R
2 drnglidl1ne0.2 B = Base R
3 nzrring R NzRing R Ring
4 eqid 1 R = 1 R
5 2 4 ringidcl R Ring 1 R B
6 3 5 syl R NzRing 1 R B
7 4 1 nzrnz R NzRing 1 R 0 ˙
8 nelsn 1 R 0 ˙ ¬ 1 R 0 ˙
9 7 8 syl R NzRing ¬ 1 R 0 ˙
10 nelne1 1 R B ¬ 1 R 0 ˙ B 0 ˙
11 6 9 10 syl2anc R NzRing B 0 ˙