Database
BASIC ALGEBRAIC STRUCTURES
Ideals
Principal ideal rings. Divisibility in the integers
drnglpir
Next ⟩
rspsn
Metamath Proof Explorer
Ascii
Unicode
Theorem
drnglpir
Description:
Division rings are principal ideal.
(Contributed by
Stefan O'Rear
, 3-Jan-2015)
Ref
Expression
Assertion
drnglpir
⊢
R
∈
DivRing
→
R
∈
LPIR
Proof
Step
Hyp
Ref
Expression
1
drngring
⊢
R
∈
DivRing
→
R
∈
Ring
2
eqid
⊢
Base
R
=
Base
R
3
eqid
⊢
0
R
=
0
R
4
eqid
⊢
LIdeal
⁡
R
=
LIdeal
⁡
R
5
2
3
4
drngnidl
⊢
R
∈
DivRing
→
LIdeal
⁡
R
=
0
R
Base
R
6
eqid
⊢
LPIdeal
⁡
R
=
LPIdeal
⁡
R
7
6
3
lpi0
⊢
R
∈
Ring
→
0
R
∈
LPIdeal
⁡
R
8
6
2
lpi1
⊢
R
∈
Ring
→
Base
R
∈
LPIdeal
⁡
R
9
7
8
prssd
⊢
R
∈
Ring
→
0
R
Base
R
⊆
LPIdeal
⁡
R
10
1
9
syl
⊢
R
∈
DivRing
→
0
R
Base
R
⊆
LPIdeal
⁡
R
11
5
10
eqsstrd
⊢
R
∈
DivRing
→
LIdeal
⁡
R
⊆
LPIdeal
⁡
R
12
6
4
islpir2
⊢
R
∈
LPIR
↔
R
∈
Ring
∧
LIdeal
⁡
R
⊆
LPIdeal
⁡
R
13
1
11
12
sylanbrc
⊢
R
∈
DivRing
→
R
∈
LPIR