Metamath Proof Explorer


Theorem drnglpir

Description: Division rings are principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Assertion drnglpir R DivRing R LPIR

Proof

Step Hyp Ref Expression
1 drngring R DivRing R Ring
2 eqid Base R = Base R
3 eqid 0 R = 0 R
4 eqid LIdeal R = LIdeal R
5 2 3 4 drngnidl R DivRing LIdeal R = 0 R Base R
6 eqid LPIdeal R = LPIdeal R
7 6 3 lpi0 R Ring 0 R LPIdeal R
8 6 2 lpi1 R Ring Base R LPIdeal R
9 7 8 prssd R Ring 0 R Base R LPIdeal R
10 1 9 syl R DivRing 0 R Base R LPIdeal R
11 5 10 eqsstrd R DivRing LIdeal R LPIdeal R
12 6 4 islpir2 R LPIR R Ring LIdeal R LPIdeal R
13 1 11 12 sylanbrc R DivRing R LPIR