Metamath Proof Explorer


Theorem drngmcl

Description: The product of two nonzero elements of a division ring is nonzero. (Contributed by NM, 7-Sep-2011)

Ref Expression
Hypotheses drngmcl.b B = Base R
drngmcl.t · ˙ = R
drngmcl.z 0 ˙ = 0 R
Assertion drngmcl R DivRing X B 0 ˙ Y B 0 ˙ X · ˙ Y B 0 ˙

Proof

Step Hyp Ref Expression
1 drngmcl.b B = Base R
2 drngmcl.t · ˙ = R
3 drngmcl.z 0 ˙ = 0 R
4 eqid mulGrp R 𝑠 B 0 ˙ = mulGrp R 𝑠 B 0 ˙
5 1 3 4 drngmgp R DivRing mulGrp R 𝑠 B 0 ˙ Grp
6 difss B 0 ˙ B
7 eqid mulGrp R = mulGrp R
8 7 1 mgpbas B = Base mulGrp R
9 4 8 ressbas2 B 0 ˙ B B 0 ˙ = Base mulGrp R 𝑠 B 0 ˙
10 6 9 ax-mp B 0 ˙ = Base mulGrp R 𝑠 B 0 ˙
11 1 fvexi B V
12 difexg B V B 0 ˙ V
13 7 2 mgpplusg · ˙ = + mulGrp R
14 4 13 ressplusg B 0 ˙ V · ˙ = + mulGrp R 𝑠 B 0 ˙
15 11 12 14 mp2b · ˙ = + mulGrp R 𝑠 B 0 ˙
16 10 15 grpcl mulGrp R 𝑠 B 0 ˙ Grp X B 0 ˙ Y B 0 ˙ X · ˙ Y B 0 ˙
17 5 16 syl3an1 R DivRing X B 0 ˙ Y B 0 ˙ X · ˙ Y B 0 ˙