Metamath Proof Explorer


Theorem drngmgp

Description: A division ring contains a multiplicative group. (Contributed by NM, 8-Sep-2011)

Ref Expression
Hypotheses drngmgp.b B = Base R
drngmgp.z 0 ˙ = 0 R
drngmgp.g G = mulGrp R 𝑠 B 0 ˙
Assertion drngmgp R DivRing G Grp

Proof

Step Hyp Ref Expression
1 drngmgp.b B = Base R
2 drngmgp.z 0 ˙ = 0 R
3 drngmgp.g G = mulGrp R 𝑠 B 0 ˙
4 1 2 3 isdrng2 R DivRing R Ring G Grp
5 4 simprbi R DivRing G Grp