Metamath Proof Explorer
Description: A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014) (Proof shortened by SN, 25-Jun-2025)
|
|
Ref |
Expression |
|
Hypotheses |
drngmuleq0.b |
|
|
|
drngmuleq0.o |
|
|
|
drngmuleq0.t |
|
|
|
drngmuleq0.r |
|
|
|
drngmuleq0.x |
|
|
|
drngmuleq0.y |
|
|
Assertion |
drngmul0or |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
drngmuleq0.b |
|
2 |
|
drngmuleq0.o |
|
3 |
|
drngmuleq0.t |
|
4 |
|
drngmuleq0.r |
|
5 |
|
drngmuleq0.x |
|
6 |
|
drngmuleq0.y |
|
7 |
|
drngdomn |
|
8 |
4 7
|
syl |
|
9 |
1 3 2
|
domneq0 |
|
10 |
8 5 6 9
|
syl3anc |
|