Metamath Proof Explorer


Theorem drngmul0or

Description: A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014) (Proof shortened by SN, 25-Jun-2025)

Ref Expression
Hypotheses drngmuleq0.b B = Base R
drngmuleq0.o 0 ˙ = 0 R
drngmuleq0.t · ˙ = R
drngmuleq0.r φ R DivRing
drngmuleq0.x φ X B
drngmuleq0.y φ Y B
Assertion drngmul0or φ X · ˙ Y = 0 ˙ X = 0 ˙ Y = 0 ˙

Proof

Step Hyp Ref Expression
1 drngmuleq0.b B = Base R
2 drngmuleq0.o 0 ˙ = 0 R
3 drngmuleq0.t · ˙ = R
4 drngmuleq0.r φ R DivRing
5 drngmuleq0.x φ X B
6 drngmuleq0.y φ Y B
7 drngdomn R DivRing R Domn
8 4 7 syl φ R Domn
9 1 3 2 domneq0 R Domn X B Y B X · ˙ Y = 0 ˙ X = 0 ˙ Y = 0 ˙
10 8 5 6 9 syl3anc φ X · ˙ Y = 0 ˙ X = 0 ˙ Y = 0 ˙