Metamath Proof Explorer
Description: A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014) (Proof shortened by SN, 25-Jun-2025)
|
|
Ref |
Expression |
|
Hypotheses |
drngmuleq0.b |
|
|
|
drngmuleq0.o |
|
|
|
drngmuleq0.t |
|
|
|
drngmuleq0.r |
|
|
|
drngmuleq0.x |
|
|
|
drngmuleq0.y |
|
|
Assertion |
drngmul0or |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drngmuleq0.b |
|
| 2 |
|
drngmuleq0.o |
|
| 3 |
|
drngmuleq0.t |
|
| 4 |
|
drngmuleq0.r |
|
| 5 |
|
drngmuleq0.x |
|
| 6 |
|
drngmuleq0.y |
|
| 7 |
|
drngdomn |
|
| 8 |
4 7
|
syl |
|
| 9 |
1 3 2
|
domneq0 |
|
| 10 |
8 5 6 9
|
syl3anc |
|