| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drngmuleq0.b |
|
| 2 |
|
drngmuleq0.o |
|
| 3 |
|
drngmuleq0.t |
|
| 4 |
|
drngmuleq0.r |
|
| 5 |
|
drngmuleq0.x |
|
| 6 |
|
drngmuleq0.y |
|
| 7 |
|
df-ne |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
ad2antlr |
|
| 10 |
4
|
adantr |
|
| 11 |
5
|
adantr |
|
| 12 |
|
simpr |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
1 2 3 13 14
|
drnginvrl |
|
| 16 |
10 11 12 15
|
syl3anc |
|
| 17 |
16
|
oveq1d |
|
| 18 |
|
drngring |
|
| 19 |
4 18
|
syl |
|
| 20 |
19
|
adantr |
|
| 21 |
1 2 14
|
drnginvrcl |
|
| 22 |
10 11 12 21
|
syl3anc |
|
| 23 |
6
|
adantr |
|
| 24 |
1 3
|
ringass |
|
| 25 |
20 22 11 23 24
|
syl13anc |
|
| 26 |
1 3 13
|
ringlidm |
|
| 27 |
19 6 26
|
syl2anc |
|
| 28 |
27
|
adantr |
|
| 29 |
17 25 28
|
3eqtr3d |
|
| 30 |
29
|
adantlr |
|
| 31 |
19
|
adantr |
|
| 32 |
31
|
adantr |
|
| 33 |
22
|
adantlr |
|
| 34 |
1 3 2
|
ringrz |
|
| 35 |
32 33 34
|
syl2anc |
|
| 36 |
9 30 35
|
3eqtr3d |
|
| 37 |
36
|
ex |
|
| 38 |
7 37
|
biimtrrid |
|
| 39 |
38
|
orrd |
|
| 40 |
39
|
ex |
|
| 41 |
1 3 2
|
ringlz |
|
| 42 |
19 6 41
|
syl2anc |
|
| 43 |
|
oveq1 |
|
| 44 |
43
|
eqeq1d |
|
| 45 |
42 44
|
syl5ibrcom |
|
| 46 |
1 3 2
|
ringrz |
|
| 47 |
19 5 46
|
syl2anc |
|
| 48 |
|
oveq2 |
|
| 49 |
48
|
eqeq1d |
|
| 50 |
47 49
|
syl5ibrcom |
|
| 51 |
45 50
|
jaod |
|
| 52 |
40 51
|
impbid |
|