Metamath Proof Explorer


Theorem drngnidl

Description: A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)

Ref Expression
Hypotheses drngnidl.b B = Base R
drngnidl.z 0 ˙ = 0 R
drngnidl.u U = LIdeal R
Assertion drngnidl R DivRing U = 0 ˙ B

Proof

Step Hyp Ref Expression
1 drngnidl.b B = Base R
2 drngnidl.z 0 ˙ = 0 R
3 drngnidl.u U = LIdeal R
4 animorrl R DivRing a U a = 0 ˙ a = 0 ˙ a = B
5 drngring R DivRing R Ring
6 5 ad2antrr R DivRing a U a 0 ˙ R Ring
7 simplr R DivRing a U a 0 ˙ a U
8 simpr R DivRing a U a 0 ˙ a 0 ˙
9 3 2 lidlnz R Ring a U a 0 ˙ b a b 0 ˙
10 6 7 8 9 syl3anc R DivRing a U a 0 ˙ b a b 0 ˙
11 simpll R DivRing a U b a b 0 ˙ R DivRing
12 1 3 lidlss a U a B
13 12 adantl R DivRing a U a B
14 13 sselda R DivRing a U b a b B
15 14 adantrr R DivRing a U b a b 0 ˙ b B
16 simprr R DivRing a U b a b 0 ˙ b 0 ˙
17 eqid R = R
18 eqid 1 R = 1 R
19 eqid inv r R = inv r R
20 1 2 17 18 19 drnginvrl R DivRing b B b 0 ˙ inv r R b R b = 1 R
21 11 15 16 20 syl3anc R DivRing a U b a b 0 ˙ inv r R b R b = 1 R
22 5 ad2antrr R DivRing a U b a b 0 ˙ R Ring
23 simplr R DivRing a U b a b 0 ˙ a U
24 1 2 19 drnginvrcl R DivRing b B b 0 ˙ inv r R b B
25 11 15 16 24 syl3anc R DivRing a U b a b 0 ˙ inv r R b B
26 simprl R DivRing a U b a b 0 ˙ b a
27 3 1 17 lidlmcl R Ring a U inv r R b B b a inv r R b R b a
28 22 23 25 26 27 syl22anc R DivRing a U b a b 0 ˙ inv r R b R b a
29 21 28 eqeltrrd R DivRing a U b a b 0 ˙ 1 R a
30 29 rexlimdvaa R DivRing a U b a b 0 ˙ 1 R a
31 30 imp R DivRing a U b a b 0 ˙ 1 R a
32 10 31 syldan R DivRing a U a 0 ˙ 1 R a
33 3 1 18 lidl1el R Ring a U 1 R a a = B
34 5 33 sylan R DivRing a U 1 R a a = B
35 34 adantr R DivRing a U a 0 ˙ 1 R a a = B
36 32 35 mpbid R DivRing a U a 0 ˙ a = B
37 36 olcd R DivRing a U a 0 ˙ a = 0 ˙ a = B
38 4 37 pm2.61dane R DivRing a U a = 0 ˙ a = B
39 vex a V
40 39 elpr a 0 ˙ B a = 0 ˙ a = B
41 38 40 sylibr R DivRing a U a 0 ˙ B
42 41 ex R DivRing a U a 0 ˙ B
43 42 ssrdv R DivRing U 0 ˙ B
44 3 2 lidl0 R Ring 0 ˙ U
45 3 1 lidl1 R Ring B U
46 44 45 prssd R Ring 0 ˙ B U
47 5 46 syl R DivRing 0 ˙ B U
48 43 47 eqssd R DivRing U = 0 ˙ B