Step |
Hyp |
Ref |
Expression |
1 |
|
drngnidl.b |
|
2 |
|
drngnidl.z |
|
3 |
|
drngnidl.u |
|
4 |
|
animorrl |
|
5 |
|
drngring |
|
6 |
5
|
ad2antrr |
|
7 |
|
simplr |
|
8 |
|
simpr |
|
9 |
3 2
|
lidlnz |
|
10 |
6 7 8 9
|
syl3anc |
|
11 |
|
simpll |
|
12 |
1 3
|
lidlss |
|
13 |
12
|
adantl |
|
14 |
13
|
sselda |
|
15 |
14
|
adantrr |
|
16 |
|
simprr |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
1 2 17 18 19
|
drnginvrl |
|
21 |
11 15 16 20
|
syl3anc |
|
22 |
5
|
ad2antrr |
|
23 |
|
simplr |
|
24 |
1 2 19
|
drnginvrcl |
|
25 |
11 15 16 24
|
syl3anc |
|
26 |
|
simprl |
|
27 |
3 1 17
|
lidlmcl |
|
28 |
22 23 25 26 27
|
syl22anc |
|
29 |
21 28
|
eqeltrrd |
|
30 |
29
|
rexlimdvaa |
|
31 |
30
|
imp |
|
32 |
10 31
|
syldan |
|
33 |
3 1 18
|
lidl1el |
|
34 |
5 33
|
sylan |
|
35 |
34
|
adantr |
|
36 |
32 35
|
mpbid |
|
37 |
36
|
olcd |
|
38 |
4 37
|
pm2.61dane |
|
39 |
|
vex |
|
40 |
39
|
elpr |
|
41 |
38 40
|
sylibr |
|
42 |
41
|
ex |
|
43 |
42
|
ssrdv |
|
44 |
3 2
|
lidl0 |
|
45 |
3 1
|
lidl1 |
|
46 |
44 45
|
prssd |
|
47 |
5 46
|
syl |
|
48 |
43 47
|
eqssd |
|