Database
BASIC ALGEBRAIC STRUCTURES
Ideals
Nonzero rings and zero rings
drngnzr
Next ⟩
isnzr2
Metamath Proof Explorer
Ascii
Unicode
Theorem
drngnzr
Description:
All division rings are nonzero.
(Contributed by
Stefan O'Rear
, 24-Feb-2015)
Ref
Expression
Assertion
drngnzr
⊢
R
∈
DivRing
→
R
∈
NzRing
Proof
Step
Hyp
Ref
Expression
1
drngring
⊢
R
∈
DivRing
→
R
∈
Ring
2
eqid
⊢
0
R
=
0
R
3
eqid
⊢
1
R
=
1
R
4
2
3
drngunz
⊢
R
∈
DivRing
→
1
R
≠
0
R
5
3
2
isnzr
⊢
R
∈
NzRing
↔
R
∈
Ring
∧
1
R
≠
0
R
6
1
4
5
sylanbrc
⊢
R
∈
DivRing
→
R
∈
NzRing