Metamath Proof Explorer


Theorem drngpropd

Description: If two structures have the same group components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015)

Ref Expression
Hypotheses drngpropd.1 φ B = Base K
drngpropd.2 φ B = Base L
drngpropd.3 φ x B y B x + K y = x + L y
drngpropd.4 φ x B y B x K y = x L y
Assertion drngpropd φ K DivRing L DivRing

Proof

Step Hyp Ref Expression
1 drngpropd.1 φ B = Base K
2 drngpropd.2 φ B = Base L
3 drngpropd.3 φ x B y B x + K y = x + L y
4 drngpropd.4 φ x B y B x K y = x L y
5 1 2 4 unitpropd φ Unit K = Unit L
6 5 adantr φ K Ring Unit K = Unit L
7 1 2 eqtr3d φ Base K = Base L
8 7 adantr φ K Ring Base K = Base L
9 1 adantr φ K Ring B = Base K
10 2 adantr φ K Ring B = Base L
11 3 adantlr φ K Ring x B y B x + K y = x + L y
12 9 10 11 grpidpropd φ K Ring 0 K = 0 L
13 12 sneqd φ K Ring 0 K = 0 L
14 8 13 difeq12d φ K Ring Base K 0 K = Base L 0 L
15 6 14 eqeq12d φ K Ring Unit K = Base K 0 K Unit L = Base L 0 L
16 15 pm5.32da φ K Ring Unit K = Base K 0 K K Ring Unit L = Base L 0 L
17 1 2 3 4 ringpropd φ K Ring L Ring
18 17 anbi1d φ K Ring Unit L = Base L 0 L L Ring Unit L = Base L 0 L
19 16 18 bitrd φ K Ring Unit K = Base K 0 K L Ring Unit L = Base L 0 L
20 eqid Base K = Base K
21 eqid Unit K = Unit K
22 eqid 0 K = 0 K
23 20 21 22 isdrng K DivRing K Ring Unit K = Base K 0 K
24 eqid Base L = Base L
25 eqid Unit L = Unit L
26 eqid 0 L = 0 L
27 24 25 26 isdrng L DivRing L Ring Unit L = Base L 0 L
28 19 23 27 3bitr4g φ K DivRing L DivRing