Metamath Proof Explorer


Theorem drngui

Description: The set of units of a division ring. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses drngui.b B = Base R
drngui.z 0 ˙ = 0 R
drngui.r R DivRing
Assertion drngui B 0 ˙ = Unit R

Proof

Step Hyp Ref Expression
1 drngui.b B = Base R
2 drngui.z 0 ˙ = 0 R
3 drngui.r R DivRing
4 eqid Unit R = Unit R
5 1 4 2 isdrng R DivRing R Ring Unit R = B 0 ˙
6 3 5 mpbi R Ring Unit R = B 0 ˙
7 6 simpri Unit R = B 0 ˙
8 7 eqcomi B 0 ˙ = Unit R