Metamath Proof Explorer


Theorem drsbn0

Description: The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypothesis drsbn0.b B = Base K
Assertion drsbn0 K Dirset B

Proof

Step Hyp Ref Expression
1 drsbn0.b B = Base K
2 eqid K = K
3 1 2 isdrs K Dirset K Proset B x B y B z B x K z y K z
4 3 simp2bi K Dirset B