Database
BASIC ORDER THEORY
Preordered sets and directed sets
drsbn0
Next ⟩
drsdirfi
Metamath Proof Explorer
Ascii
Unicode
Theorem
drsbn0
Description:
The base of a directed set is not empty.
(Contributed by
Stefan O'Rear
, 1-Feb-2015)
Ref
Expression
Hypothesis
drsbn0.b
⊢
B
=
Base
K
Assertion
drsbn0
⊢
K
∈
Dirset
→
B
≠
∅
Proof
Step
Hyp
Ref
Expression
1
drsbn0.b
⊢
B
=
Base
K
2
eqid
⊢
≤
K
=
≤
K
3
1
2
isdrs
⊢
K
∈
Dirset
↔
K
∈
Proset
∧
B
≠
∅
∧
∀
x
∈
B
∀
y
∈
B
∃
z
∈
B
x
≤
K
z
∧
y
≤
K
z
4
3
simp2bi
⊢
K
∈
Dirset
→
B
≠
∅