Step |
Hyp |
Ref |
Expression |
1 |
|
drsbn0.b |
|
2 |
|
drsdirfi.l |
|
3 |
|
sseq1 |
|
4 |
3
|
anbi2d |
|
5 |
|
raleq |
|
6 |
5
|
rexbidv |
|
7 |
4 6
|
imbi12d |
|
8 |
|
sseq1 |
|
9 |
8
|
anbi2d |
|
10 |
|
raleq |
|
11 |
10
|
rexbidv |
|
12 |
9 11
|
imbi12d |
|
13 |
|
sseq1 |
|
14 |
13
|
anbi2d |
|
15 |
|
raleq |
|
16 |
15
|
rexbidv |
|
17 |
14 16
|
imbi12d |
|
18 |
|
sseq1 |
|
19 |
18
|
anbi2d |
|
20 |
|
raleq |
|
21 |
20
|
rexbidv |
|
22 |
19 21
|
imbi12d |
|
23 |
1
|
drsbn0 |
|
24 |
|
ral0 |
|
25 |
24
|
jctr |
|
26 |
25
|
eximi |
|
27 |
|
n0 |
|
28 |
|
df-rex |
|
29 |
26 27 28
|
3imtr4i |
|
30 |
23 29
|
syl |
|
31 |
30
|
adantr |
|
32 |
|
ssun1 |
|
33 |
|
sstr |
|
34 |
32 33
|
mpan |
|
35 |
34
|
anim2i |
|
36 |
|
breq2 |
|
37 |
36
|
ralbidv |
|
38 |
37
|
cbvrexvw |
|
39 |
|
simplrr |
|
40 |
|
drsprs |
|
41 |
40
|
ad5antr |
|
42 |
34
|
ad2antlr |
|
43 |
42
|
adantr |
|
44 |
43
|
sselda |
|
45 |
44
|
adantr |
|
46 |
|
simp-4r |
|
47 |
|
simprl |
|
48 |
47
|
ad2antrr |
|
49 |
|
simpr |
|
50 |
|
simprrl |
|
51 |
50
|
ad2antrr |
|
52 |
1 2
|
prstr |
|
53 |
41 45 46 48 49 51 52
|
syl132anc |
|
54 |
53
|
ex |
|
55 |
54
|
ralimdva |
|
56 |
55
|
adantlrr |
|
57 |
39 56
|
mpd |
|
58 |
|
simprrr |
|
59 |
|
vex |
|
60 |
|
breq1 |
|
61 |
59 60
|
ralsn |
|
62 |
58 61
|
sylibr |
|
63 |
|
ralun |
|
64 |
57 62 63
|
syl2anc |
|
65 |
|
simpll |
|
66 |
|
simprl |
|
67 |
|
ssun2 |
|
68 |
|
sstr |
|
69 |
67 68
|
mpan |
|
70 |
59
|
snss |
|
71 |
69 70
|
sylibr |
|
72 |
71
|
ad2antlr |
|
73 |
1 2
|
drsdir |
|
74 |
65 66 72 73
|
syl3anc |
|
75 |
64 74
|
reximddv |
|
76 |
75
|
rexlimdvaa |
|
77 |
38 76
|
syl5bi |
|
78 |
35 77
|
embantd |
|
79 |
78
|
com12 |
|
80 |
79
|
a1i |
|
81 |
7 12 17 22 31 80
|
findcard2 |
|
82 |
81
|
com12 |
|
83 |
82
|
3impia |
|