| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drsbn0.b |  | 
						
							| 2 |  | drsdirfi.l |  | 
						
							| 3 |  | sseq1 |  | 
						
							| 4 | 3 | anbi2d |  | 
						
							| 5 |  | raleq |  | 
						
							| 6 | 5 | rexbidv |  | 
						
							| 7 | 4 6 | imbi12d |  | 
						
							| 8 |  | sseq1 |  | 
						
							| 9 | 8 | anbi2d |  | 
						
							| 10 |  | raleq |  | 
						
							| 11 | 10 | rexbidv |  | 
						
							| 12 | 9 11 | imbi12d |  | 
						
							| 13 |  | sseq1 |  | 
						
							| 14 | 13 | anbi2d |  | 
						
							| 15 |  | raleq |  | 
						
							| 16 | 15 | rexbidv |  | 
						
							| 17 | 14 16 | imbi12d |  | 
						
							| 18 |  | sseq1 |  | 
						
							| 19 | 18 | anbi2d |  | 
						
							| 20 |  | raleq |  | 
						
							| 21 | 20 | rexbidv |  | 
						
							| 22 | 19 21 | imbi12d |  | 
						
							| 23 | 1 | drsbn0 |  | 
						
							| 24 |  | ral0 |  | 
						
							| 25 | 24 | jctr |  | 
						
							| 26 | 25 | eximi |  | 
						
							| 27 |  | n0 |  | 
						
							| 28 |  | df-rex |  | 
						
							| 29 | 26 27 28 | 3imtr4i |  | 
						
							| 30 | 23 29 | syl |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 |  | ssun1 |  | 
						
							| 33 |  | sstr |  | 
						
							| 34 | 32 33 | mpan |  | 
						
							| 35 | 34 | anim2i |  | 
						
							| 36 |  | breq2 |  | 
						
							| 37 | 36 | ralbidv |  | 
						
							| 38 | 37 | cbvrexvw |  | 
						
							| 39 |  | simplrr |  | 
						
							| 40 |  | drsprs |  | 
						
							| 41 | 40 | ad5antr |  | 
						
							| 42 | 34 | ad2antlr |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 | 43 | sselda |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 |  | simp-4r |  | 
						
							| 47 |  | simprl |  | 
						
							| 48 | 47 | ad2antrr |  | 
						
							| 49 |  | simpr |  | 
						
							| 50 |  | simprrl |  | 
						
							| 51 | 50 | ad2antrr |  | 
						
							| 52 | 1 2 | prstr |  | 
						
							| 53 | 41 45 46 48 49 51 52 | syl132anc |  | 
						
							| 54 | 53 | ex |  | 
						
							| 55 | 54 | ralimdva |  | 
						
							| 56 | 55 | adantlrr |  | 
						
							| 57 | 39 56 | mpd |  | 
						
							| 58 |  | simprrr |  | 
						
							| 59 |  | vex |  | 
						
							| 60 |  | breq1 |  | 
						
							| 61 | 59 60 | ralsn |  | 
						
							| 62 | 58 61 | sylibr |  | 
						
							| 63 |  | ralun |  | 
						
							| 64 | 57 62 63 | syl2anc |  | 
						
							| 65 |  | simpll |  | 
						
							| 66 |  | simprl |  | 
						
							| 67 |  | ssun2 |  | 
						
							| 68 |  | sstr |  | 
						
							| 69 | 67 68 | mpan |  | 
						
							| 70 | 59 | snss |  | 
						
							| 71 | 69 70 | sylibr |  | 
						
							| 72 | 71 | ad2antlr |  | 
						
							| 73 | 1 2 | drsdir |  | 
						
							| 74 | 65 66 72 73 | syl3anc |  | 
						
							| 75 | 64 74 | reximddv |  | 
						
							| 76 | 75 | rexlimdvaa |  | 
						
							| 77 | 38 76 | biimtrid |  | 
						
							| 78 | 35 77 | embantd |  | 
						
							| 79 | 78 | com12 |  | 
						
							| 80 | 79 | a1i |  | 
						
							| 81 | 7 12 17 22 31 80 | findcard2 |  | 
						
							| 82 | 81 | com12 |  | 
						
							| 83 | 82 | 3impia |  |