Metamath Proof Explorer


Theorem dsmm0cl

Description: The all-zero vector is contained in the finite hull, since its support is empty and therefore finite. This theorem along with the next one effectively proves that the finite hull is a "submonoid", although that does not exist as a defined concept yet. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses dsmmcl.p P = S 𝑠 R
dsmmcl.h H = Base S m R
dsmmcl.i φ I W
dsmmcl.s φ S V
dsmmcl.r φ R : I Mnd
dsmm0cl.z 0 ˙ = 0 P
Assertion dsmm0cl φ 0 ˙ H

Proof

Step Hyp Ref Expression
1 dsmmcl.p P = S 𝑠 R
2 dsmmcl.h H = Base S m R
3 dsmmcl.i φ I W
4 dsmmcl.s φ S V
5 dsmmcl.r φ R : I Mnd
6 dsmm0cl.z 0 ˙ = 0 P
7 1 3 4 5 prdsmndd φ P Mnd
8 eqid Base P = Base P
9 8 6 mndidcl P Mnd 0 ˙ Base P
10 7 9 syl φ 0 ˙ Base P
11 1 3 4 5 prds0g φ 0 𝑔 R = 0 P
12 11 6 eqtr4di φ 0 𝑔 R = 0 ˙
13 12 adantr φ a I 0 𝑔 R = 0 ˙
14 13 fveq1d φ a I 0 𝑔 R a = 0 ˙ a
15 5 ffnd φ R Fn I
16 fvco2 R Fn I a I 0 𝑔 R a = 0 R a
17 15 16 sylan φ a I 0 𝑔 R a = 0 R a
18 14 17 eqtr3d φ a I 0 ˙ a = 0 R a
19 nne ¬ 0 ˙ a 0 R a 0 ˙ a = 0 R a
20 18 19 sylibr φ a I ¬ 0 ˙ a 0 R a
21 20 ralrimiva φ a I ¬ 0 ˙ a 0 R a
22 rabeq0 a I | 0 ˙ a 0 R a = a I ¬ 0 ˙ a 0 R a
23 21 22 sylibr φ a I | 0 ˙ a 0 R a =
24 0fin Fin
25 23 24 eqeltrdi φ a I | 0 ˙ a 0 R a Fin
26 eqid S m R = S m R
27 1 26 8 2 3 15 dsmmelbas φ 0 ˙ H 0 ˙ Base P a I | 0 ˙ a 0 R a Fin
28 10 25 27 mpbir2and φ 0 ˙ H