Metamath Proof Explorer


Theorem dsmmacl

Description: The finite hull is closed under addition. (Contributed by Stefan O'Rear, 11-Jan-2015)

Ref Expression
Hypotheses dsmmcl.p P = S 𝑠 R
dsmmcl.h H = Base S m R
dsmmcl.i φ I W
dsmmcl.s φ S V
dsmmcl.r φ R : I Mnd
dsmmacl.j φ J H
dsmmacl.k φ K H
dsmmacl.a + ˙ = + P
Assertion dsmmacl φ J + ˙ K H

Proof

Step Hyp Ref Expression
1 dsmmcl.p P = S 𝑠 R
2 dsmmcl.h H = Base S m R
3 dsmmcl.i φ I W
4 dsmmcl.s φ S V
5 dsmmcl.r φ R : I Mnd
6 dsmmacl.j φ J H
7 dsmmacl.k φ K H
8 dsmmacl.a + ˙ = + P
9 eqid Base P = Base P
10 eqid S m R = S m R
11 5 ffnd φ R Fn I
12 1 10 9 2 3 11 dsmmelbas φ J H J Base P a I | J a 0 R a Fin
13 6 12 mpbid φ J Base P a I | J a 0 R a Fin
14 13 simpld φ J Base P
15 1 10 9 2 3 11 dsmmelbas φ K H K Base P a I | K a 0 R a Fin
16 7 15 mpbid φ K Base P a I | K a 0 R a Fin
17 16 simpld φ K Base P
18 1 9 8 4 3 5 14 17 prdsplusgcl φ J + ˙ K Base P
19 4 adantr φ a I S V
20 3 adantr φ a I I W
21 11 adantr φ a I R Fn I
22 14 adantr φ a I J Base P
23 17 adantr φ a I K Base P
24 simpr φ a I a I
25 1 9 19 20 21 22 23 8 24 prdsplusgfval φ a I J + ˙ K a = J a + R a K a
26 25 neeq1d φ a I J + ˙ K a 0 R a J a + R a K a 0 R a
27 26 rabbidva φ a I | J + ˙ K a 0 R a = a I | J a + R a K a 0 R a
28 13 simprd φ a I | J a 0 R a Fin
29 16 simprd φ a I | K a 0 R a Fin
30 unfi a I | J a 0 R a Fin a I | K a 0 R a Fin a I | J a 0 R a a I | K a 0 R a Fin
31 28 29 30 syl2anc φ a I | J a 0 R a a I | K a 0 R a Fin
32 neorian J a 0 R a K a 0 R a ¬ J a = 0 R a K a = 0 R a
33 32 bicomi ¬ J a = 0 R a K a = 0 R a J a 0 R a K a 0 R a
34 33 con1bii ¬ J a 0 R a K a 0 R a J a = 0 R a K a = 0 R a
35 5 ffvelrnda φ a I R a Mnd
36 eqid Base R a = Base R a
37 eqid 0 R a = 0 R a
38 36 37 mndidcl R a Mnd 0 R a Base R a
39 eqid + R a = + R a
40 36 39 37 mndlid R a Mnd 0 R a Base R a 0 R a + R a 0 R a = 0 R a
41 35 38 40 syl2anc2 φ a I 0 R a + R a 0 R a = 0 R a
42 oveq12 J a = 0 R a K a = 0 R a J a + R a K a = 0 R a + R a 0 R a
43 42 eqeq1d J a = 0 R a K a = 0 R a J a + R a K a = 0 R a 0 R a + R a 0 R a = 0 R a
44 41 43 syl5ibrcom φ a I J a = 0 R a K a = 0 R a J a + R a K a = 0 R a
45 34 44 syl5bi φ a I ¬ J a 0 R a K a 0 R a J a + R a K a = 0 R a
46 45 necon1ad φ a I J a + R a K a 0 R a J a 0 R a K a 0 R a
47 46 ss2rabdv φ a I | J a + R a K a 0 R a a I | J a 0 R a K a 0 R a
48 unrab a I | J a 0 R a a I | K a 0 R a = a I | J a 0 R a K a 0 R a
49 47 48 sseqtrrdi φ a I | J a + R a K a 0 R a a I | J a 0 R a a I | K a 0 R a
50 31 49 ssfid φ a I | J a + R a K a 0 R a Fin
51 27 50 eqeltrd φ a I | J + ˙ K a 0 R a Fin
52 1 10 9 2 3 11 dsmmelbas φ J + ˙ K H J + ˙ K Base P a I | J + ˙ K a 0 R a Fin
53 18 51 52 mpbir2and φ J + ˙ K H