Step |
Hyp |
Ref |
Expression |
1 |
|
dsmmcl.p |
|
2 |
|
dsmmcl.h |
|
3 |
|
dsmmcl.i |
|
4 |
|
dsmmcl.s |
|
5 |
|
dsmmcl.r |
|
6 |
|
dsmmacl.j |
|
7 |
|
dsmmacl.k |
|
8 |
|
dsmmacl.a |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
5
|
ffnd |
|
12 |
1 10 9 2 3 11
|
dsmmelbas |
|
13 |
6 12
|
mpbid |
|
14 |
13
|
simpld |
|
15 |
1 10 9 2 3 11
|
dsmmelbas |
|
16 |
7 15
|
mpbid |
|
17 |
16
|
simpld |
|
18 |
1 9 8 4 3 5 14 17
|
prdsplusgcl |
|
19 |
4
|
adantr |
|
20 |
3
|
adantr |
|
21 |
11
|
adantr |
|
22 |
14
|
adantr |
|
23 |
17
|
adantr |
|
24 |
|
simpr |
|
25 |
1 9 19 20 21 22 23 8 24
|
prdsplusgfval |
|
26 |
25
|
neeq1d |
|
27 |
26
|
rabbidva |
|
28 |
13
|
simprd |
|
29 |
16
|
simprd |
|
30 |
|
unfi |
|
31 |
28 29 30
|
syl2anc |
|
32 |
|
neorian |
|
33 |
32
|
bicomi |
|
34 |
33
|
con1bii |
|
35 |
5
|
ffvelrnda |
|
36 |
|
eqid |
|
37 |
|
eqid |
|
38 |
36 37
|
mndidcl |
|
39 |
|
eqid |
|
40 |
36 39 37
|
mndlid |
|
41 |
35 38 40
|
syl2anc2 |
|
42 |
|
oveq12 |
|
43 |
42
|
eqeq1d |
|
44 |
41 43
|
syl5ibrcom |
|
45 |
34 44
|
syl5bi |
|
46 |
45
|
necon1ad |
|
47 |
46
|
ss2rabdv |
|
48 |
|
unrab |
|
49 |
47 48
|
sseqtrrdi |
|
50 |
31 49
|
ssfid |
|
51 |
27 50
|
eqeltrd |
|
52 |
1 10 9 2 3 11
|
dsmmelbas |
|
53 |
18 51 52
|
mpbir2and |
|